Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
- URL: http://arxiv.org/abs/2503.12978v3
- Date: Wed, 09 Apr 2025 02:23:34 GMT
- Title: Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
- Authors: Yang Ji, Ying Sun, Hengshu Zhu,
- Abstract summary: understanding how job skills influence salary is crucial for promoting recruitment with competitive salary systems and aligned salary expectations.<n>We propose a novel explainable set-based neural prototyping approach, namely bftextLGDESetNet, for explainable salary prediction.<n>Our method achieves superior performance than state-of-the-art baselines in salary prediction while providing explainable insights into salary-influencing patterns.
- Score: 19.541536821635113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of the knowledge economy, understanding how job skills influence salary is crucial for promoting recruitment with competitive salary systems and aligned salary expectations. Despite efforts on salary prediction based on job positions and talent demographics, there still lacks methods to effectively discern the set-structured skills' intricate composition effect on job salary. While recent advances in neural networks have significantly improved accurate set-based quantitative modeling, their lack of explainability hinders obtaining insights into the skills' composition effects. Indeed, model explanation for set data is challenging due to the combinatorial nature, rich semantics, and unique format. To this end, in this paper, we propose a novel intrinsically explainable set-based neural prototyping approach, namely \textbf{LGDESetNet}, for explainable salary prediction that can reveal disentangled skill sets that impact salary from both local and global perspectives. Specifically, we propose a skill graph-enhanced disentangled discrete subset selection layer to identify multi-faceted influential input subsets with varied semantics. Furthermore, we propose a set-oriented prototype learning method to extract globally influential prototypical sets. The resulting output is transparently derived from the semantic interplay between these input subsets and global prototypes. Extensive experiments on four real-world datasets demonstrate that our method achieves superior performance than state-of-the-art baselines in salary prediction while providing explainable insights into salary-influencing patterns.
Related papers
- Job Market Cheat Codes: Prototyping Salary Prediction and Job Grouping with Synthetic Job Listings [0.0]
This paper presents a machine learning methodology prototype using a large synthetic dataset of job listings.<n>It aims to uncover the key features influencing job market dynamics and provide valuable insights for job seekers, employers, and researchers.
arXiv Detail & Related papers (2025-06-18T20:55:33Z) - Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.<n> Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Distilling Vision-Language Foundation Models: A Data-Free Approach via Prompt Diversification [49.41632476658246]
We discuss the extension of DFKD to Vision-Language Foundation Models without access to the billion-level image-text datasets.
The objective is to customize a student model for distribution-agnostic downstream tasks with given category concepts.
We propose three novel Prompt Diversification methods to encourage image synthesis with diverse styles.
arXiv Detail & Related papers (2024-07-21T13:26:30Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
We introduce One-shot Open Affordance Learning (OOAL), where a model is trained with just one example per base object category.
We propose a vision-language framework with simple and effective designs that boost the alignment between visual features and affordance text embeddings.
Experiments on two affordance segmentation benchmarks show that the proposed method outperforms state-of-the-art models with less than 1% of the full training data.
arXiv Detail & Related papers (2023-11-29T16:23:06Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z) - Interpretable Neural Networks for Panel Data Analysis in Economics [10.57079240576682]
We propose a class of interpretable neural network models that can achieve both high prediction accuracy and interpretability.
We apply the model to predicting individual's monthly employment status using high-dimensional administrative data.
We achieve an accuracy of 94.5% in the test set, which is comparable to the best performed conventional machine learning methods.
arXiv Detail & Related papers (2020-10-11T18:40:22Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
We propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks.
We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model.
arXiv Detail & Related papers (2020-10-10T14:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.