論文の概要: DTGBrepGen: A Novel B-rep Generative Model through Decoupling Topology and Geometry
- arxiv url: http://arxiv.org/abs/2503.13110v1
- Date: Mon, 17 Mar 2025 12:34:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:17.291700
- Title: DTGBrepGen: A Novel B-rep Generative Model through Decoupling Topology and Geometry
- Title(参考訳): DTGBrepGen:位相と幾何学の分離による新しいB-rep生成モデル
- Authors: Jing Li, Yihang Fu, Falai Chen,
- Abstract要約: 幾何学モデルの境界表現(B-rep)はCADの基本形式である
B-rep生成のための新しいトポロジ・ジオメトリ・デカップリングフレームワークDTGBrepGenを提案する。
- 参考スコア(独自算出の注目度): 3.859930277034918
- License:
- Abstract: Boundary representation (B-rep) of geometric models is a fundamental format in Computer-Aided Design (CAD). However, automatically generating valid and high-quality B-rep models remains challenging due to the complex interdependence between the topology and geometry of the models. Existing methods tend to prioritize geometric representation while giving insufficient attention to topological constraints, making it difficult to maintain structural validity and geometric accuracy. In this paper, we propose DTGBrepGen, a novel topology-geometry decoupled framework for B-rep generation that explicitly addresses both aspects. Our approach first generates valid topological structures through a two-stage process that independently models edge-face and edge-vertex adjacency relationships. Subsequently, we employ Transformer-based diffusion models for sequential geometry generation, progressively generating vertex coordinates, followed by edge geometries and face geometries which are represented as B-splines. Extensive experiments on diverse CAD datasets show that DTGBrepGen significantly outperforms existing methods in both topological validity and geometric accuracy, achieving higher validity rates and producing more diverse and realistic B-reps. Our code is publicly available at https://github.com/jinli99/DTGBrepGen.
- Abstract(参考訳): 幾何学モデルの境界表現(B-rep)はCAD(Computer-Aided Design)の基本形式である。
しかし、トポロジと幾何学の複雑な相互依存性のため、有効かつ高品質なB-repモデルの自動生成は依然として困難である。
既存の手法では、位相的制約に十分な注意を払って幾何学的表現を優先順位付けする傾向があり、構造的妥当性と幾何的精度を維持することは困難である。
本稿では,B-rep生成のための新しいトポロジ・ジオメトリ・デカップリングフレームワークDTGBrepGenを提案する。
提案手法は, エッジ面とエッジ頂点の隣接関係を独立にモデル化する2段階プロセスにより, 有効トポロジ構造を生成する。
その後、逐次幾何生成にTransformerベースの拡散モデルを用い、徐々に頂点座標を生成し、その後にエッジジオメトリとフェースジオメトリをBスプラインとして表現する。
多様なCADデータセットに対する大規模な実験により、DTGBrepGenは、トポロジカルな妥当性と幾何的精度の両方で既存の手法を著しく上回り、高い妥当性を達成し、より多彩でリアルなB-repsを生成することを示した。
私たちのコードはhttps://github.com/jinli99/DTGBrepGenで公開されています。
関連論文リスト
- R-CoT: Reverse Chain-of-Thought Problem Generation for Geometric Reasoning in Large Multimodal Models [86.06825304372613]
本稿では,R-CoT(Reverse Chain-of-Thought)幾何問題生成パイプラインを提案する。
まず、GeoChainを導入し、高忠実度幾何画像とそれに対応する記述を生成する。
次に、記述に基づいてステップバイステップの推論を行うReverse A&Q手法を設計し、推論結果から逆の質問を生成する。
論文 参考訳(メタデータ) (2024-10-23T13:58:39Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications [71.809127869349]
本稿では、幾何学的メッセージパッシングの観点から、既存のモデルの統一的なビューを提供するデータ構造として幾何学的グラフを定式化する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry [24.779824909395245]
BrepGenは拡散に基づく生成手法であり、境界表現(Breep)コンピュータ支援設計(CAD)モデルを直接出力する。
BrepGenは、階層木における新しい構造付き潜在幾何学としてB-repモデルを表す。
論文 参考訳(メタデータ) (2024-01-28T04:07:59Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
我々は、この新しい定式化を数学的に定義し、ニューラル潜在幾何探索(NLGS)として作成する。
計量幾何学からのグロモフ・ハウスドルフ距離に基づいて、候補潜在測地間の距離の新たな概念を提案する。
次に、潜在測地間の滑らかさの概念に基づいてグラフ探索空間を設計し、その計算を帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-09-09T14:29:22Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
我々は,多角形形状を埋め込み空間に符号化できる汎用多角形符号化モデルを開発した。
1)MNISTに基づく形状分類,2)DBSR-46KとDBSR-cplx46Kという2つの新しいデータセットに基づく空間関係予測を行う。
以上の結果から,NUFTspec と ResNet1D は,既存のベースラインよりも有意なマージンで優れていた。
論文 参考訳(メタデータ) (2022-09-29T15:59:23Z) - SolidGen: An Autoregressive Model for Direct B-rep Synthesis [15.599363091502365]
境界表現(B-rep)形式はコンピュータ支援設計(CAD)におけるデファクト形状表現である
CADモデル生成への最近のアプローチは、スケッチ・アンド・エクスクルード・モデリングシーケンスの学習に焦点を当てている。
本稿では,B-repsから学習し,B-repsの合成を可能にする新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-26T00:00:45Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z) - UV-Net: Learning from Boundary Representations [17.47054752280569]
本稿では,3次元CADモデルによる境界表現(B-rep)データを直接操作するために設計された新しいニューラルネットワークアーキテクチャと表現であるUV-Netを紹介する。
B-repデータは、データ構造が複雑であり、連続的な非ユークリッド幾何学的エンティティと離散位相的エンティティの両方をサポートするため、現代の機械学習で使用される際、いくつかのユニークな課題を示す。
論文 参考訳(メタデータ) (2020-06-18T00:12:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。