論文の概要: Patient-specific radiomic feature selection with reconstructed healthy persona of knee MR images
- arxiv url: http://arxiv.org/abs/2503.13131v1
- Date: Mon, 17 Mar 2025 12:55:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:14.608061
- Title: Patient-specific radiomic feature selection with reconstructed healthy persona of knee MR images
- Title(参考訳): 膝関節MRI像の健常者再構成による患者固有の放射線学的特徴の選択
- Authors: Yaxi Chen, Simin Ni, Aleksandra Ivanova, Shaheer U. Saeed, Rikin Hargunani, Jie Huang, Chaozong Liu, Yipeng Hu,
- Abstract要約: 古典的な放射能の特徴は、画像の外観と強度パターンを記述するように設計されている。
このような放射能特性を用いた低次元パラメトリックモデルでは、解釈性は向上するが、臨床における比較性能は低下する。
本稿では,患者ごとの放射線学的特徴を学習することで,標準的なロジスティック回帰モデルの性能を大幅に改善する手法を提案する。
- 参考スコア(独自算出の注目度): 39.11295870085984
- License:
- Abstract: Classical radiomic features have been designed to describe image appearance and intensity patterns. These features are directly interpretable and readily understood by radiologists. Compared with end-to-end deep learning (DL) models, lower dimensional parametric models that use such radiomic features offer enhanced interpretability but lower comparative performance in clinical tasks. In this study, we propose an approach where a standard logistic regression model performance is substantially improved by learning to select radiomic features for individual patients, from a pool of candidate features. This approach has potentials to maintain the interpretability of such approaches while offering comparable performance to DL. We also propose to expand the feature pool by generating a patient-specific healthy persona via mask-inpainting using a denoising diffusion model trained on healthy subjects. Such a pathology-free baseline feature set allows further opportunity in novel feature discovery and improved condition classification. We demonstrate our method on multiple clinical tasks of classifying general abnormalities, anterior cruciate ligament tears, and meniscus tears. Experimental results demonstrate that our approach achieved comparable or even superior performance than state-of-the-art DL approaches while offering added interpretability by using radiomic features extracted from images and supplemented by generating healthy personas. Example clinical cases are discussed in-depth to demonstrate the intepretability-enabled utilities such as human-explainable feature discovery and patient-specific location/view selection. These findings highlight the potentials of the combination of subject-specific feature selection with generative models in augmenting radiomic analysis for more interpretable decision-making. The codes are available at: https://github.com/YaxiiC/RadiomicsPersona.git
- Abstract(参考訳): 古典的な放射能の特徴は、画像の外観と強度パターンを記述するように設計されている。
これらの特徴は、放射線学者によって直接解釈され、容易に理解される。
エンド・ツー・エンド・エンド・ディープ・ラーニング(DL)モデルと比較して、そのような放射能特性を用いた低次元パラメトリックモデルでは、解釈性は向上するが、臨床タスクでは比較性能は低い。
本研究では,患者個人に対する放射線学的特徴の抽出を学習することで,標準的なロジスティック回帰モデルの性能が大幅に向上する手法を提案する。
このアプローチは、DLに匹敵するパフォーマンスを提供しながら、そのようなアプローチの解釈可能性を維持する可能性がある。
また,健常者を対象とした認知拡散モデルを用いて,マスク塗布による患者固有の健康人格を生成することで,機能プールの拡大も提案する。
このような病態のない基本特徴集合は、新たな特徴発見と条件分類の改善の機会を与える。
本手法は, 全身異常, 前十字靭帯断裂, 半月板断裂の複数の臨床的課題について検討した。
実験の結果,本手法は,画像から抽出した放射線学的特徴を有効利用し,健康な人格を生成して補うことによって,解釈性を高めつつ,最先端のDL手法と同等あるいは優れた性能を達成できた。
患者固有の特徴発見や患者固有の位置・ビュー選択など,理解不能性のあるユーティリティを詳細に検討した。
これらの知見は、被写体特異的特徴選択と生成モデルの組み合わせが、より解釈可能な意思決定のための放射能解析を増強する可能性を強調した。
コードは以下の通り。 https://github.com/YaxiiC/RadiomicsPersona.git
関連論文リスト
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Hierarchical Analysis of Visual COVID-19 Features from Chest Radiographs [5.832030105874915]
我々は, 放射線学的決定プロセスと整合した, 人間の解釈可能なクラス階層を用いて, 放射線学的特徴をモデル化する。
実験により、モデル故障は、ICU撮像条件と非常に相関し、特定の種類の放射線学的特徴を識別することが本質的に困難であることが示されている。
論文 参考訳(メタデータ) (2021-07-14T11:37:28Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
Using Progressively Growing GANs [0.0]
胸部X線は多くの患者のワークアップに欠かせない道具である。
新たな診断ツールを開発するためには,ラベル付きデータの量を増やす必要がある。
これまでの研究は、イメージを合成してトレーニングデータを増強するクラス固有のGANを作成することで、これらの問題に対処しようとしてきた。
論文 参考訳(メタデータ) (2020-10-07T11:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。