PAUSE: Low-Latency and Privacy-Aware Active User Selection for Federated Learning
- URL: http://arxiv.org/abs/2503.13173v1
- Date: Mon, 17 Mar 2025 13:50:35 GMT
- Title: PAUSE: Low-Latency and Privacy-Aware Active User Selection for Federated Learning
- Authors: Ori Peleg, Natalie Lang, Stefano Rini, Nir Shlezinger, Kobi Cohen,
- Abstract summary: Federated learning (FL) enables edge devices to collaboratively train a machine learning model without the need to share potentially private data.<n>FL poses two key challenges: First, the accumulation of privacy leakage over time, and second, communication latency.<n>We propose a method that jointly addresses the accumulation of privacy leakage and communication latency via active user selection.
- Score: 34.40737362564651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables multiple edge devices to collaboratively train a machine learning model without the need to share potentially private data. Federated learning proceeds through iterative exchanges of model updates, which pose two key challenges: First, the accumulation of privacy leakage over time, and second, communication latency. These two limitations are typically addressed separately: The former via perturbed updates to enhance privacy and the latter using user selection to mitigate latency - both at the expense of accuracy. In this work, we propose a method that jointly addresses the accumulation of privacy leakage and communication latency via active user selection, aiming to improve the trade-off among privacy, latency, and model performance. To achieve this, we construct a reward function that accounts for these three objectives. Building on this reward, we propose a multi-armed bandit (MAB)-based algorithm, termed Privacy-aware Active User SElection (PAUSE) which dynamically selects a subset of users each round while ensuring bounded overall privacy leakage. We establish a theoretical analysis, systematically showing that the reward growth rate of PAUSE follows that of the best-known rate in MAB literature. To address the complexity overhead of active user selection, we propose a simulated annealing-based relaxation of PAUSE and analyze its ability to approximate the reward-maximizing policy under reduced complexity. We numerically validate the privacy leakage, associated improved latency, and accuracy gains of our methods for the federated training in various scenarios.
Related papers
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Active Privacy-Utility Trade-off Against Inference in Time-Series Data
Sharing [29.738666406095074]
We consider a user releasing her data containing personal information in return of a service from an honest-but-curious service provider (SP)
We formulate both problems as partially observable Markov decision processes (POMDPs) and numerically solve them by advantage actor-critic (A2C) deep reinforcement learning (DRL)
We evaluate the privacy-utility trade-off (PUT) of the proposed policies on both the synthetic data and smoking activity dataset, and show their validity by testing the activity detection accuracy of the SP modeled by a long short-term memory (LSTM) neural network.
arXiv Detail & Related papers (2022-02-11T18:57:31Z) - Differentially Private Federated Learning on Heterogeneous Data [10.431137628048356]
Federated Learning (FL) is a paradigm for large-scale distributed learning.
It faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users.
We propose a novel FL approach to tackle these two challenges together by incorporating Differential Privacy (DP) constraints.
arXiv Detail & Related papers (2021-11-17T18:23:49Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
We study the privacy-utility trade-off (PUT) in time-series data sharing.
Methods that preserve the privacy for the current time may leak significant amount of information at the trace level.
We consider sharing the distorted version of a user's true data sequence with an untrusted third party.
arXiv Detail & Related papers (2020-03-04T18:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.