論文の概要: GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation
- arxiv url: http://arxiv.org/abs/2503.13180v1
- Date: Mon, 17 Mar 2025 13:54:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:32:57.510825
- Title: GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation
- Title(参考訳): GC-Fed: 部分的クライアント参加によるグラディエント集中型フェデレーションラーニング
- Authors: Jungwon Seo, Ferhat Ozgur Catak, Chunming Rong, Kibeom Hong, Minhoe Kim,
- Abstract要約: マルチソース情報融合(MSIF)は、さまざまなデータストリームを活用し、意思決定、状況認識、システムのレジリエンスを高める。
フェデレートラーニング(FL)は、プライバシを保護しながらMSIFを可能にするが、高いデータ劣化下でクライアントのドリフトに悩まされる。
従来の緩和戦略は参照ベースの勾配調整に依存しており、部分的な参加設定では不安定である。
勾配集中化(GC)にインスパイアされた基準自由勾配補正法であるグラディエント・フェデレート・ラーニング(GC-Fed)を提案する。
- 参考スコア(独自算出の注目度): 6.769127514113163
- License:
- Abstract: Multi-source information fusion (MSIF) leverages diverse data streams to enhance decision-making, situational awareness, and system resilience. Federated Learning (FL) enables MSIF while preserving privacy but suffers from client drift under high data heterogeneity, leading to performance degradation. Traditional mitigation strategies rely on reference-based gradient adjustments, which can be unstable in partial participation settings. To address this, we propose Gradient Centralized Federated Learning (GC-Fed), a reference-free gradient correction method inspired by Gradient Centralization (GC). We introduce Local GC and Global GC, applying GC during local training and global aggregation, respectively. Our hybrid GC-Fed approach selectively applies GC at the feature extraction layer locally and at the classifier layer globally, improving training stability and model performance. Theoretical analysis and empirical results demonstrate that GC-Fed mitigates client drift and achieves state-of-the-art accuracy gains of up to 20% in heterogeneous settings.
- Abstract(参考訳): マルチソース情報融合(MSIF)は、さまざまなデータストリームを活用し、意思決定、状況認識、システムのレジリエンスを高める。
フェデレートラーニング(FL)は、プライバシを保護しながらMSIFを可能にするが、高いデータの不均一性の下でクライアントのドリフトに悩まされ、パフォーマンスが低下する。
従来の緩和戦略は参照ベースの勾配調整に依存しており、部分的な参加設定では不安定である。
そこで本研究では,GCにインスパイアされた基準自由勾配補正法であるGC-Fedを提案する。
本稿では,ローカルトレーニング中のGCとグローバルアグリゲーションをそれぞれ適用したローカルGCとグローバルGCを紹介する。
当社のハイブリッドGC-Fedアプローチでは,特徴抽出層にGCを局所的に,またグローバルに分類器層にGCを選択的に適用し,訓練安定性とモデル性能を改善した。
理論的解析と実験結果から,GC-Fedはクライアントのドリフトを緩和し,異種環境下での最先端精度を最大20%向上させることを示した。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Hierarchical Federated Learning with Multi-Timescale Gradient Correction [24.713834338757195]
本稿では,この問題を解決するためにMTGC法を提案する。
私たちのキーとなる考え方は、(i)グループ勾配のクライアント勾配を補正する、すなわち、個々のデータセットに基づいたローカル更新によるクライアントモデルのドリフトを減らすために、異なる制御を導入することです。
論文 参考訳(メタデータ) (2024-09-27T05:10:05Z) - CG-FedLLM: How to Compress Gradients in Federated Fune-tuning for Large Language Models [21.919883617413358]
本研究では,Large-Language Models (LLMs) における通信効率向上のための圧縮勾配の革新的手法を提案する。
また、このプライバシー中心のフレームワークにおける信号対雑音比、圧縮率、ロバスト性に着目した一連の実験分析を行った。
論文 参考訳(メタデータ) (2024-05-22T15:32:38Z) - Accelerating Federated Learning by Selecting Beneficial Herd of Local Gradients [40.84399531998246]
Federated Learning (FL) は、通信ネットワークシステムにおける分散機械学習フレームワークである。
非独立分散(Non-IID)データは、大域モデルの収束効率に悪影響を及ぼす。
FLモデルの収束を加速するために,局所勾配の有利な群を選別するBHerd戦略を提案する。
論文 参考訳(メタデータ) (2024-03-25T09:16:59Z) - GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning [84.54244771470012]
Source-Free Universal Domain Adaptation (SF-UniDA) は、共通カテゴリに属する「既知の」データを正確に分類することを目的としている。
本稿では,適応的な一対一のグローバルクラスタリングアルゴリズムを備えた新しいグローバル・ローカルクラスタリング(GLC)手法を提案する。
我々はGLCをGLC++に進化させ、対照的な親和性学習戦略を統合する。
論文 参考訳(メタデータ) (2024-03-21T13:57:45Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT)は、分散化されたローカルクライアントから収集されたデータが、グローバルに普及しているロングテール分布を示すパラダイムである。
本稿では、Fed-LT(FedLoGe)におけるFederated Local and Generic Model Training(FedLoGe)というアプローチを紹介し、ローカルモデルとジェネリックモデルの両方のパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-01-17T05:04:33Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。