Cycle-Aware ZZ Crosstalk Mitigation on Quantum Hardware
- URL: http://arxiv.org/abs/2503.13204v2
- Date: Thu, 20 Mar 2025 03:58:05 GMT
- Title: Cycle-Aware ZZ Crosstalk Mitigation on Quantum Hardware
- Authors: Jiayi Zhong, Yuxin Deng,
- Abstract summary: ZZ crosstalk and decoherence hinder superconducting quantum computing.<n>We formulate the problem by integrating quantum cycles and two forms of qubit interference.<n>We then propose CYCO, a CYcle-aware ZZ Crosstalk Optimization algorithm.
- Score: 2.6242820867975123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ZZ crosstalk and decoherence hinder superconducting quantum computing. To enhance parallelism in mitigating ZZ crosstalk, we formulate the problem by integrating quantum cycles and two forms of qubit interference. We then propose CYCO, a CYcle-aware ZZ Crosstalk Optimization algorithm, which uses a timing-based greedy strategy to schedule gates through cycles within quantum circuits. A novel data structure called Time and Distance Dependency Graph is designed to model gate data dependencies and physical distances from quantum topologies for precise scheduling. Additionally, dynamically punching barriers reduces idle time in quantum circuits, further enhancing parallelism. Simulations show a reduction of up to 37.44% in quantum program cycle (14.19% on average) on various NISQ devices with 53 to 127 qubits. Real-device experiments on IBMQ-Brisbane demonstrate significant acceleration in quantum computing while maintaining fidelity.
Related papers
- Efficient Quantum Circuit Compilation for Near-Term Quantum Advantage [17.38734393793605]
We propose an approximate method for compiling target quantum circuits into brick-wall layouts.<n>This new circuit design consists of two-qubit CNOT gates that can be directly implemented on real quantum computers.
arXiv Detail & Related papers (2025-01-13T15:04:39Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Combining quantum processors with real-time classical communication [0.6597195879147557]
Quantum computers process information with the laws of quantum mechanics.<n>Current quantum hardware is noisy, can only store information for a short time, and is limited to a few quantum bits, i.e., qubits.<n>Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting to create quantum states requiring a periodic connectivity employing up to 142 qubits.
arXiv Detail & Related papers (2024-02-27T19:00:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Comparing planar quantum computing platforms at the quantum speed limit [0.0]
We present a comparison of the theoretical minimal gate time, i.e., the quantum speed limit (QSL) for realistic two- and multi-qubit gate implementations in neutral atoms and superconducting qubits.
We analyze these quantum algorithms in terms of circuit run times and gate counts both in the standard gate model and the parity mapping.
arXiv Detail & Related papers (2023-04-04T12:47:00Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Orbital-optimized pair-correlated electron simulations on trapped-ion
quantum computers [0.471876092032107]
Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on quantum computers.
A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz.
We run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware.
arXiv Detail & Related papers (2022-12-05T18:40:54Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.