A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening
- URL: http://arxiv.org/abs/2503.13214v3
- Date: Fri, 21 Mar 2025 12:55:38 GMT
- Title: A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening
- Authors: Jie Huang, Haorui Chen, Jiaxuan Ren, Siran Peng, Liangjian Deng,
- Abstract summary: deep learning methods for remote sensing pansharpening have advanced rapidly.<n>Many existing methods struggle to fully leverage feature heterogeneity and redundancy.<n>We introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges.
- Score: 11.791358860917189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
Related papers
- Revitalizing Reconstruction Models for Multi-class Anomaly Detection via Class-Aware Contrastive Learning [19.114941437668705]
We propose a plug-and-play modification by incorporating class-aware contrastive learning (CL)<n> Experiments across four datasets verify the effectiveness of our approach, yielding significant improvements and superior performance compared to advanced methods.
arXiv Detail & Related papers (2024-12-06T04:31:09Z) - CGLearn: Consistent Gradient-Based Learning for Out-of-Distribution Generalization [0.7366405857677226]
In this work, we introduce a simple yet powerful approach, CGLearn, which relies on the agreement of gradients across various environments.
Our proposed method demonstrates superior performance compared to state-of-the-art methods in both linear and nonlinear settings.
Comprehensive experiments on both synthetic and real-world datasets highlight its effectiveness in diverse scenarios.
arXiv Detail & Related papers (2024-11-09T02:36:39Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image
Anomaly Detection [13.801572236048601]
FOcus-the-Discrepancy (FOD) can simultaneously spot the patch-wise, intra- and inter-discrepancies of anomalies.
In this paper, we propose a novel AD framework: FOcus-the-Discrepancy (FOD), which can simultaneously spot the patch-wise, intra- and inter-discrepancies of anomalies.
arXiv Detail & Related papers (2023-08-06T01:30:26Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Orthogonal SVD Covariance Conditioning and Latent Disentanglement [65.67315418971688]
Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned.
We propose Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR)
Experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization.
arXiv Detail & Related papers (2022-12-11T20:31:31Z) - Deep Combinatorial Aggregation [58.78692706974121]
Deep ensemble is a simple and effective method that achieves state-of-the-art results for uncertainty-aware learning tasks.
In this work, we explore a generalization of deep ensemble called deep aggregation (DCA)
DCA creates multiple instances of network components and aggregates their combinations to produce diversified model proposals and predictions.
arXiv Detail & Related papers (2022-10-12T17:35:03Z) - Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality [65.67315418971688]
Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR) are proposed.
Experiments on visual recognition demonstrate that our methods can simultaneously improve the covariance conditioning and generalization.
arXiv Detail & Related papers (2022-07-05T15:39:29Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.