論文の概要: RainScaleGAN: a Conditional Generative Adversarial Network for Rainfall Downscaling
- arxiv url: http://arxiv.org/abs/2503.13316v1
- Date: Mon, 17 Mar 2025 15:54:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:32:56.921535
- Title: RainScaleGAN: a Conditional Generative Adversarial Network for Rainfall Downscaling
- Title(参考訳): RainScaleGAN: 降雨ダウンスケーリングのための条件付きジェネレーティブ・アドバイザリ・ネットワーク
- Authors: Marcello Iotti, Paolo Davini, Jost von Hardenberg, Giuseppe Zappa,
- Abstract要約: 降水ダウンスケーリングのための条件付き深層畳み込み生成適応ネットワーク(GAN)であるRainScaleGANを紹介する。
RainScaleGANの機能は、降水データセットの空間解像度を人工的に劣化させる完全モデル設定でテストされる。
開発したモデルでは,本研究で確認された降水量減少手法の1つに優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To this day, accurately simulating local-scale precipitation and reliably reproducing its distribution remains a challenging task. The limited horizontal resolution of Global Climate Models is among the primary factors undermining their skill in this context. The physical mechanisms driving the onset and development of precipitation, especially in extreme events, operate at spatio-temporal scales smaller than those numerically resolved, thus struggling to be captured accurately. In order to circumvent this limitation, several downscaling approaches have been developed over the last decades to address the discrepancy between the spatial resolution of models output and the resolution required by local-scale applications. In this paper, we introduce RainScaleGAN, a conditional deep convolutional Generative Adversarial Network (GAN) for precipitation downscaling. GANs have been effectively used in image super-resolution, an approach highly relevant for downscaling tasks. RainScaleGAN's capabilities are tested in a perfect-model setup, where the spatial resolution of a precipitation dataset is artificially degraded from 0.25$^{\circ}\times$0.25$^{\circ}$ to 2$^{\circ}\times$2$^\circ$, and RainScaleGAN is used to restore it. The developed model outperforms one of the leading precipitation downscaling method found in the literature. RainScaleGAN not only generates a synthetic dataset featuring plausible high-resolution spatial patterns and intensities, but also produces a precipitation distribution with statistics closely mirroring those of the ground-truth dataset. Given that RainScaleGAN's approach is agnostic with respect to the underlying physics, the method has the potential to be applied to other physical variables such as surface winds or temperature.
- Abstract(参考訳): 現在、地域規模の降水量を正確にシミュレートし、その分布を確実に再現することは難しい課題である。
地球温暖化モデルにおける限定的な水平分解能は、この文脈における彼らのスキルを損なう主要な要因である。
降水の開始と発達を駆動する物理的メカニズム、特に極端事象では、数値的に解決されたものよりも時空間スケールが小さく、正確に捕獲されるのに苦労する。
この制限を回避するために、モデル出力の空間分解能と局所スケールアプリケーションに必要な分解能の相違に対処するために、過去数十年にわたっていくつかのダウンスケーリング手法が開発されてきた。
本稿では,降水ダウンスケーリングのための条件付き深層畳み込み生成適応ネットワーク(GAN)であるRainScaleGANを紹介する。
GANは、ダウンスケールタスクに非常に関連するアプローチであるイメージ超解像において、効果的に使用されている。
RainScaleGANの機能は完璧なモデルでテストされ、降水データセットの空間分解能は 0.25$^{\circ}\times$0.25$^{\circ}$ から 2$^{\circ}\times$2$^\circ$ に分解され、RainScaleGAN はそれを復元するために使用される。
開発したモデルでは,本研究で確認された降水量減少手法の1つに優れていた。
RainScaleGANは、高分解能な空間パターンと強度を含む合成データセットを生成するだけでなく、地上真実のデータセットの統計をよく反映した降水分布を生成する。
RainScaleGANのアプローチが基礎となる物理学に関して非依存であることを考えると、この手法は表面の風や温度といった他の物理的変数に適用できる可能性がある。
関連論文リスト
- Downscaling Precipitation with Bias-informed Conditional Diffusion Model [10.545983522538085]
現在のグローバル気候モデルでは、局所分析には大きすぎる空間分解能で運用されている。
ディープラーニングに基づく統計的ダウンスケーリング手法は、有望なソリューションを提供する。
降水の統計的ダウンスケーリングのためのバイアスインフォームド条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-12-19T05:36:52Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - Generative Adversarial Models for Extreme Geospatial Downscaling [0.0]
本稿では,非常に高いスケーリング係数に対応可能な条件付きGANに基づく地理空間ダウンスケーリング手法について述べる。
この手法は、既存の手法では無視されがちなダウンスケーリングプロセスに固有の不確実性を明確に考慮する。
1つの決定論的結果ではなく、多量の高分解能サンプルを生成する。
論文 参考訳(メタデータ) (2024-02-21T18:25:04Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
この研究は、最近のビデオ拡散モデルを拡張して、超解像を降水させる。
決定論的ダウンスケーラと時間条件付き拡散モデルを用いて雑音特性と高周波パターンを抽出する。
カリフォルニアとヒマラヤを用いたCRPS, MSE, 降水分布の把握, および定性的側面の解析により, データ駆動型降水ダウンスケーリングの新しい標準として本手法を確立した。
論文 参考訳(メタデータ) (2023-12-11T02:38:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
本稿では,降雨層に適合する動的降雨発生器を用いた半教師付きビデオデレーシング手法を提案する。
具体的には、1つのエミッションモデルと1つのトランジションモデルから成り、空間的物理的構造と時系列の雨の連続的な変化を同時にエンコードする。
ラベル付き合成およびラベルなしの実データのために、それらの基礎となる共通知識を十分に活用するために、様々な先行フォーマットが設計されている。
論文 参考訳(メタデータ) (2021-03-14T14:28:57Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。