論文の概要: Reliable and Efficient Amortized Model-based Evaluation
- arxiv url: http://arxiv.org/abs/2503.13335v1
- Date: Mon, 17 Mar 2025 16:15:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:44.686198
- Title: Reliable and Efficient Amortized Model-based Evaluation
- Title(参考訳): 信頼度と効率性を考慮したモデルベース評価
- Authors: Sang Truong, Yuheng Tu, Percy Liang, Bo Li, Sanmi Koyejo,
- Abstract要約: 幅広いベンチマークの平均スコアは、実際に言語モデルを使用することをガイドするシグナルを提供する。
コストを下げるための一般的な試みは、ベンチマークのサブセットの平均スコアを計算することである。
このアプローチは、平均スコアがベンチマークサブセットの質問の難しさと合わさったため、信頼性の低いLM性能をしばしば引き起こす。
我々は、その内容から質問難度を予測するモデルを訓練し、信頼性のある測定をコストのごく一部で行えるようにした。
- 参考スコア(独自算出の注目度): 57.6469531082784
- License:
- Abstract: Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.
- Abstract(参考訳): 開発および展開段階での言語モデル(LM)の包括的評価は、これらのモデルには多くの能力(例えば、数学的推論、法的支援、医療診断)と安全性リスク(例えば、人種的偏見、毒性、誤情報)があるため必要である。
幅広いベンチマークの平均スコアは、実際にこれらのLMの使用をガイドするシグナルを提供する。
現在、総合評価は大量のベンチマーク問題のためにコストがかかり、頻繁な評価は現実的ではない。
コストを下げるための一般的な試みは、ベンチマークのサブセットの平均スコアを計算することである。
このアプローチは、平均スコアがベンチマークサブセットの質問の難しさと合わさっているため、しばしば信頼性の低いLM性能を示す。
項目応答理論(IRT)はこの課題に対処するために設計され、質問の難易度を慎重に制御することで信頼性の高い測定を行う。
残念ながら、質問の難しさは見積もるのに費用がかかる。
この課題に直面して、我々は、そのコンテンツから質問の難しさを予測するモデルを訓練し、信頼性のある測定をコストのごく一部で行えるようにした。
さらに、この難易度予測器を利用して、難易度を与えられた質問生成器を訓練することにより、評価効率をさらに向上する。
この質問生成器は適応テストにおいて必須であり、ベンチマーク質問のランダムなサブセットを使用する代わりに、LLM性能の現在の推定に基づいて情報的質問を適応的に選択する。
22の共通自然言語ベンチマークと172のLMの実験は、このアプローチが現在の一般的なプラクティスよりも信頼性と効率性が高いことを示している。
関連論文リスト
- Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - EQUATOR: A Deterministic Framework for Evaluating LLM Reasoning with Open-Ended Questions. # v1.0.0-beta [2.1249213103048414]
本研究では,決定論的スコアと実測精度とロバストな推論評価に着目したEQUATOR評価器を提案する。
ベクトルデータベースを使用して、EQUATORは人間の評価された回答とオープンエンドの質問をペアリングし、より正確でスケーラブルな評価を可能にする。
この枠組みは,高精度な基準を維持しつつ,従来のマルチ選択評価を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2024-12-31T03:56:17Z) - TurtleBench: Evaluating Top Language Models via Real-World Yes/No Puzzles [2.8839090723566296]
TurtleBenchは、私たちのオンラインTurtle Soup Puzzleプラットフォームから、実際のユーザ推測を収集します。
TurtleBenchには1,532のユーザ推測とアノテーション後の推測の正確性が含まれている。
私たちは現在利用可能な最も先進的な言語モデルのうち9つを徹底的に評価しました。
論文 参考訳(メタデータ) (2024-10-07T17:58:47Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
市販のベンチマークを戦略的に混合することにより,効率的な金標準評価を実現するための新しいパラダイムであるMixEvalを提案する。
提案手法は,(1)包括的でよく分散された実世界のユーザクエリと(2)Webから抽出したクエリと,既存のベンチマークからの類似したクエリとをマッチングすることによって,効率よく,かつ,かなり改善された基盤トラスベースのベンチマークを橋渡しする。
論文 参考訳(メタデータ) (2024-06-03T05:47:05Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Efficient Benchmarking of Language Models [22.696230279151166]
本稿では、信頼性を損なうことなく、LM評価のコストをインテリジェントに削減する、効率的なベンチマーク問題を提案する。
HELMベンチマークをテストケースとして、異なるベンチマーク設計選択が計算-信頼性トレードオフにどのように影響するかを検討する。
本稿では,HELMベンチマークに適用した場合,ベンチマーク信頼性の低下を最小限に抑えながら,大幅なコスト削減を実現する評価アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-22T17:59:30Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。