論文の概要: Valid Text-to-SQL Generation with Unification-based DeepStochLog
- arxiv url: http://arxiv.org/abs/2503.13342v1
- Date: Mon, 17 Mar 2025 16:21:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:35:59.948831
- Title: Valid Text-to-SQL Generation with Unification-based DeepStochLog
- Title(参考訳): 統一型DeepStochLogによるテキストからSQLへのバリデーション
- Authors: Ying Jiao, Luc De Raedt, Giuseppe Marra,
- Abstract要約: 本稿では,統一に基づく定節文法を用いた構文制約とスキーマ制約を課すニューロシンボリック・フレームワークを提案する。
私たちのフレームワークは、自然言語理解能力を活用するために、言語モデルに対する双方向インターフェースも構築しています。
この作業は、統一ベースの文法で言語モデルを拡張するための最初のステップである。
- 参考スコア(独自算出の注目度): 13.798222228959132
- License:
- Abstract: Large language models have been used to translate natural language questions to SQL queries. Without hard constraints on syntax and database schema, they occasionally produce invalid queries that are not executable. These failures limit the usage of these systems in real-life scenarios. We propose a neurosymbolic framework that imposes SQL syntax and schema constraints with unification-based definite clause grammars and thus guarantees the generation of valid queries. Our framework also builds a bi-directional interface to language models to leverage their natural language understanding abilities. The evaluation results on a subset of SQL grammars show that all our output queries are valid. This work is the first step towards extending language models with unification-based grammars. We demonstrate this extension enhances the validity, execution accuracy, and ground truth alignment of the underlying language model by a large margin. Our code is available at https://github.com/ML-KULeuven/deepstochlog-lm.
- Abstract(参考訳): 自然言語の質問をSQLクエリに変換するために,大規模な言語モデルが使用されている。
構文やデータベーススキーマに厳しい制約がなければ、時には実行不可能なクエリを生成します。
これらの障害は、現実のシナリオにおけるこれらのシステムの使用を制限する。
本稿では,SQL構文とスキーマ制約を統一ベースの定節文法で強制するニューロシンボリックフレームワークを提案し,有効なクエリの生成を保証する。
私たちのフレームワークは、自然言語理解能力を活用するために、言語モデルに対する双方向インターフェースも構築しています。
SQL文法のサブセットに対する評価結果は、出力クエリがすべて有効であることを示している。
この作業は、統一ベースの文法で言語モデルを拡張するための最初のステップである。
この拡張により、基礎となる言語モデルの妥当性、実行精度、基礎となる真理アライメントを大きなマージンで向上させることができる。
私たちのコードはhttps://github.com/ML-KULeuven/deepstochlog-lm.comで公開されています。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring [11.78795632771211]
本稿では,任意の入力質問を正しく処理するモデルとして,テキスト・ツー・信頼性を評価するための新しいベンチマークを提案する。
2つのモデリング手法を用いて,新たなペナルティに基づく評価基準を用いた既存手法の評価を行った。
論文 参考訳(メタデータ) (2024-03-23T16:12:52Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
論文 参考訳(メタデータ) (2023-10-27T00:13:59Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Text-to-SQL Error Correction with Language Models of Code [24.743066730684742]
本稿では,テキストとコーパスの自動誤り訂正モデルの構築方法について検討する。
トークンレベルの編集は文脈外であり、時には曖昧であることに気付き、代わりに節レベルの編集モデルを構築することを提案する。
論文 参考訳(メタデータ) (2023-05-22T14:42:39Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to-は、自然言語の質問を構造化されたクエリ言語()に変換し、データベースから情報を取得するタスクである。
本稿では,テキスト・トゥ・テキストのための LLM ベースのフレームワークを提案する。
我々は,疑問骨格を抽出する非意味化機構を設計し,その構造的類似性に基づいて類似した例を検索する。
論文 参考訳(メタデータ) (2023-04-26T06:02:01Z) - XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for
Cross-lingual Text-to-SQL Semantic Parsing [70.40401197026925]
大規模言語モデルを用いたインコンテキスト学習は、最近セマンティック解析タスクの驚くべき結果を示している。
この研究は、あるクエリに対して関連する英語の例を検索する学習を行うXRICLフレームワークを導入している。
また、大規模言語モデルの翻訳プロセスを容易にするために、対象言語に対するグローバルな翻訳例も含んでいる。
論文 参考訳(メタデータ) (2022-10-25T01:33:49Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Photon: A Robust Cross-Domain Text-to-SQL System [189.1405317853752]
私たちは、マッピングを即座に決定できない自然言語入力にフラグを付けることができる、堅牢でモジュール化されたクロスドメインなNLIDBPhotonを紹介します。
提案手法は,翻訳不能なユーザ入力に対して,テキストからネイティブシステムへのロバストさを効果的に向上させる。
論文 参考訳(メタデータ) (2020-07-30T07:44:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。