Optimal Bounds for Adversarial Constrained Online Convex Optimization
- URL: http://arxiv.org/abs/2503.13366v3
- Date: Wed, 09 Apr 2025 21:32:42 GMT
- Title: Optimal Bounds for Adversarial Constrained Online Convex Optimization
- Authors: Ricardo N. Ferreira, Cláudia Soares,
- Abstract summary: We show for the first time that is possible to obtain the optimal $O(sqrtT)$ bound on both regret and CCV.<n>Based on a new surrogate loss function enforcing a minimum penalty on the constraint function, we demonstrate that both the Follow-the-Regularized-Leader and the Online Gradient Descent achieve the optimal bounds.
- Score: 1.9336815376402723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Constrained Online Convex Optimization (COCO) can be seen as a generalization of the standard Online Convex Optimization (OCO) framework. At each round, a cost function and constraint function are revealed after a learner chooses an action. The goal is to minimize both the regret and cumulative constraint violation (CCV) against an adaptive adversary. We show for the first time that is possible to obtain the optimal $O(\sqrt{T})$ bound on both regret and CCV, improving the best known bounds of $O \left( \sqrt{T} \right)$ and $\tilde{O} \left( \sqrt{T} \right)$ for the regret and CCV, respectively. Based on a new surrogate loss function enforcing a minimum penalty on the constraint function, we demonstrate that both the Follow-the-Regularized-Leader and the Online Gradient Descent achieve the optimal bounds.
Related papers
- $O(\sqrt{T})$ Static Regret and Instance Dependent Constraint Violation for Constrained Online Convex Optimization [16.99491218081617]
The objective is to simultaneously minimize the static regret and cumulative constraint violation (CCV)<n>An algorithm is proposed that guarantees a static regret of $O(sqrtT)$ and a CCV of $mincV, O(sqrtTlog T) $, where $cV$ depends on the distance between the consecutively revealed constraint sets.
arXiv Detail & Related papers (2025-02-07T15:47:04Z) - Projection-free Algorithms for Online Convex Optimization with Adversarial Constraints [10.047668792033033]
We study a generalization of the Online Convex Optimization (OCO) framework with time-varying adversarial constraints.<n>In this problem, after selecting a feasible action from the convex decision set $X,$ a convex constraint function is revealed alongside the cost function in each round.<n>We propose a *projection-free* online policy which makes a single call to a Linear Program (LP) solver per round.
arXiv Detail & Related papers (2025-01-28T13:04:32Z) - An Optimistic Algorithm for Online Convex Optimization with Adversarial Constraints [55.2480439325792]
We study Online Convex Optimization (OCO) with adversarial constraints.<n>We focus on a setting where the algorithm has access to predictions of the loss and constraint functions.<n>Our results show that we can improve the current best bounds of $ O(sqrtT) $ regret and $ tildeO(sqrtT) $ cumulative constraint violations.
arXiv Detail & Related papers (2024-12-11T03:06:42Z) - Tight Bounds for Online Convex Optimization with Adversarial Constraints [16.99491218081617]
In COCO, a convex cost function and a convex constraint function are revealed to the learner after the action for that round is chosen.
We show that an online policy can simultaneously achieve $O(sqrtT)$ regret and $tildeO(sqrtT)$ CCV without any restrictive assumptions.
arXiv Detail & Related papers (2024-05-15T12:37:03Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Optimal Algorithms for Online Convex Optimization with Adversarial Constraints [16.99491218081617]
In COCO, a convex cost function and a convex constraint function are revealed to the learner after it chooses the action for that round.
We show that an online policy can simultaneously achieve $O(sqrtT)$ regret and $tildeO(sqrtT)$ CCV without any restrictive assumptions.
arXiv Detail & Related papers (2023-10-29T09:55:41Z) - Projection-Free Online Convex Optimization with Stochastic Constraints [0.0]
We develop projection-free algorithms for online convex optimization with constraints.
We deduce sublinear regret and constraint violation bounds for various settings.
We prove that the constraint violation can be reduced to have the same growth as the regret.
arXiv Detail & Related papers (2023-05-02T11:27:34Z) - Improved Dynamic Regret for Online Frank-Wolfe [54.690867216880356]
We investigate the dynamic regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online convex optimization.
In this paper, we derive improved dynamic regret bounds for OFW by extending the fast convergence rates of FW from offline optimization to online optimization.
arXiv Detail & Related papers (2023-02-11T07:19:51Z) - A Unifying Framework for Online Optimization with Long-Term Constraints [62.35194099438855]
We study online learning problems in which a decision maker has to take a sequence of decisions subject to $m$ long-term constraints.
The goal is to maximize their total reward, while at the same time achieving small cumulative violation across the $T$ rounds.
We present the first best-of-both-world type algorithm for this general class problems, with no-regret guarantees both in the case in which rewards and constraints are selected according to an unknown model, and in the case in which they are selected at each round by an adversary.
arXiv Detail & Related papers (2022-09-15T16:59:19Z) - Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor [68.17855675511602]
We investigate an online prediction strategy named as Discounted-Normal-Predictor (Kapralov and Panigrahy, 2010) for smoothed online convex optimization (SOCO)
We show that the proposed algorithm can minimize the adaptive regret with switching cost in every interval.
arXiv Detail & Related papers (2022-05-02T08:48:22Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
We study policy optimization in an infinite horizon, $gamma$-discounted constrained Markov decision process (CMDP)
Our objective is to return a policy that achieves large expected reward with a small constraint violation.
We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms.
arXiv Detail & Related papers (2022-04-11T15:08:09Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Regret and Cumulative Constraint Violation Analysis for Online Convex
Optimization with Long Term Constraints [24.97580261894342]
This paper considers online convex optimization with long term constraints, where constraints can be violated in intermediate rounds, but need to be satisfied in the long run.
A novel algorithm is first proposed and it achieves an $mathcalO(Tmaxc,1-c)$ bound for static regret and an $mathcalO(T(1-c)/2)$ bound for cumulative constraint violation.
arXiv Detail & Related papers (2021-06-09T15:18:06Z) - Online Convex Optimization with Continuous Switching Constraint [78.25064451417082]
We introduce the problem of online convex optimization with continuous switching constraint.
We show that, for strongly convex functions, the regret bound can be improved to $O(log T)$ for $S=Omega(log T)$, and $O(minT/exp(S)+S,T)$ for $S=O(log T)$.
arXiv Detail & Related papers (2021-03-21T11:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.