論文の概要: Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
- arxiv url: http://arxiv.org/abs/2503.13383v1
- Date: Mon, 17 Mar 2025 17:11:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:36.407781
- Title: Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
- Title(参考訳): 作物のクリーム:インストラクションファインチューニングのためのリッチ、スケーラブル、トランスファー可能なマルチモーダルデータ
- Authors: Mengyao Lyu, Yan Li, Huasong Zhong, Wenhao Yang, Hui Chen, Jungong Han, Guiguang Ding, Zhenheng Yang,
- Abstract要約: 我々は、堅牢で効率的なマルチモーダル・インストラクショナルデータを収集する。
インタラクションスタイルを多様性指標とし、マルチモーダルリッチなスタイルラーを用いてデータインストラクションパターンを識別する。
14のマルチモーダルベンチマークによって検証された10以上の実験環境において、ランダムサンプリング、ベースライン戦略、最先端の選択方法に対する一貫した改善を示す。
- 参考スコア(独自算出の注目度): 59.56171041796373
- License:
- Abstract: The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.
- Abstract(参考訳): 大規模言語モデル(LLM)が細調整(SFT)段階(Zhou et al , 2024)において最小限の監督しか必要としないという仮説は、最近のデータキュレーションと選択研究の進歩によって裏付けられている。
しかし、それらの安定性と一般化性は、実験的なセットアップや検証プロトコルの脆弱性により損なわれ、ランダムサンプリングを超えるには至らなかった(Diddee & Ippolito, 2024; Xia et al , 2024b)。
LLM(Multi-modal LLMs, MLLMs)をベースとして構築され, トークン量とデータソースの不均一性を増大させ, データ選択の重要度と複雑さを増幅する。
マルチモーダルな指導データを堅牢かつ効率的に収集するために,14の視覚言語関連機能に分解して品質指標の粒度を再定義し,各データ候補の能力を評価するために多モーダルなスコアラを導入する。
多様性を促進するために、アライメントステージの固有の目的を考慮して、インタラクションスタイルを多様性指標とし、マルチモーダルリッチなスタイルラーを用いてデータインストラクションパターンを識別する。
マルチモーダルなリッチスコアラーとスタイラー(mmSSR)は、ハイスコア情報を多種多様な形式でユーザに伝達することを保証します。
埋め込みベースのクラスタリングやグリージーサンプリングが不要なため、mSSRは予算制約の異なる数百万のデータに効率よくスケールし、一般的なあるいは特定の能力獲得のカスタマイズをサポートし、キュレーションのための新しいドメインへのトレーニング不要の一般化を容易にする。
14のマルチモーダルベンチマークによって検証された10以上の実験的な設定で、ランダムサンプリング、ベースライン戦略、最先端の選択方法に対する一貫した改善を示し、2.6Mデータのわずか30%で99.1%のフルパフォーマンスを達成した。
関連論文リスト
- Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data [36.277423093218275]
大規模言語モデル(LLM)の全体的な能力向上におけるデータ多様性の役割について検討する。
本稿では,LLMに2つのアイデンティティを与える新しい手法を提案する。多様性報酬に基づいてデータを認知的に探索し,選択する出力モデルと,選択したデータに調整する入力モデルである。
論文 参考訳(メタデータ) (2025-02-05T17:21:01Z) - Mastering Collaborative Multi-modal Data Selection: A Focus on Informativeness, Uniqueness, and Representativeness [65.01625761120924]
我々は、貴重なサンプルはタスクを知らせ、非冗長であり、サンプル分布(つまり、外れ値ではない)を表すべきであると論じる。
我々は、効果的なデータ選択のために、インフォーマル性、ユニーク性、代表性という3つの重要な原則を活用するコラボレーティブフレームワーク、DataTailorを提案する。
様々なベンチマークの実験により、DataTailorはデータの15%でフルデータの微調整のパフォーマンスの100.8%を達成している。
論文 参考訳(メタデータ) (2024-12-09T08:36:10Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [64.61315565501681]
M$2$RAG(Multi-modal Retrieval Augmented Multi-modal Generation)は、基礎モデルのマルチモーダルWebコンテンツ処理を可能にする新しいタスクである。
潜在的な影響にもかかわらず、M$2$RAGは、包括的な分析と高品質なデータリソースを欠いている。
論文 参考訳(メタデータ) (2024-11-25T13:20:19Z) - FoRA: Low-Rank Adaptation Model beyond Multimodal Siamese Network [19.466279425330857]
そこで我々は,LMA(Low-rank Modal Adaptors)と呼ばれる新しいマルチモーダル物体検出器を提案する。
作業は2024年4月にACM MMに提出されたが拒否された。
論文 参考訳(メタデータ) (2024-07-23T02:27:52Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - MultiZoo & MultiBench: A Standardized Toolkit for Multimodal Deep
Learning [110.54752872873472]
MultiZooは、20コアのマルチモーダルアルゴリズムの標準化実装からなる公開ツールキットである。
MultiBenchは15のデータセット、10のモダリティ、20の予測タスク、6の研究領域にまたがるベンチマークである。
論文 参考訳(メタデータ) (2023-06-28T17:59:10Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformerは新しいトランスフォーマーベースのモデルで、クライアントでのアンモダルデータセットのみを使用して、単一モダルトレーニングを可能にする。
我々は,マルコフ連鎖モンテカルロサンプリングを用いた局所エンコーダの不確実性を考慮したアグリゲーション法を開発した。
一般的な感情分析ベンチマークであるCMU-MOSIとCMU-MOSEIの実験は、HA-Fedformerが最先端のマルチモーダルモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2023-03-27T07:07:33Z) - Multi-Stage Based Feature Fusion of Multi-Modal Data for Human Activity
Recognition [6.0306313759213275]
本稿では,RGBビデオとIMUセンサの機能を効果的に組み合わせたマルチモーダルフレームワークを提案する。
最初の段階では,各入力エンコーダが特徴を効果的に抽出することを学ぶ。
ビデオのみに比べて22%,11%,MMActデータセットでは20%,12%の大幅な改善が見られた。
論文 参考訳(メタデータ) (2022-11-08T15:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。