論文の概要: A novel Fourier Adjacency Transformer for advanced EEG emotion recognition
- arxiv url: http://arxiv.org/abs/2503.13465v1
- Date: Fri, 28 Feb 2025 03:15:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 07:08:06.458411
- Title: A novel Fourier Adjacency Transformer for advanced EEG emotion recognition
- Title(参考訳): 高度な脳波感情認識のための新しいFourier Adjacency Transformer
- Authors: Jinfeng Wang, Yanhao Huang, Sifan Song, Boqian Wang, Jionglong Su, Jiaman Ding,
- Abstract要約: 脳波の感情認識は、ノイズ干渉、信号の非定常性、脳活動の固有の複雑さによって大きな障害に直面している。
本稿では,Fourierベースの周期解析とグラフ駆動構造モデリングをシームレスに統合する新しいフレームワークであるFourier Adjacency Transformerを提案する。
- 参考スコア(独自算出の注目度): 1.1347176912133798
- License:
- Abstract: EEG emotion recognition faces significant hurdles due to noise interference, signal nonstationarity, and the inherent complexity of brain activity which make accurately emotion classification. In this study, we present the Fourier Adjacency Transformer, a novel framework that seamlessly integrates Fourier-based periodic analysis with graph-driven structural modeling. Our method first leverages novel Fourier-inspired modules to extract periodic features from embedded EEG signals, effectively decoupling them from aperiodic components. Subsequently, we employ an adjacency attention scheme to reinforce universal inter-channel correlation patterns, coupling these patterns with their sample-based counterparts. Empirical evaluations on SEED and DEAP datasets demonstrate that our method surpasses existing state-of-the-art techniques, achieving an improvement of approximately 6.5% in recognition accuracy. By unifying periodicity and structural insights, this framework offers a promising direction for future research in EEG emotion analysis.
- Abstract(参考訳): 脳波の感情認識は、ノイズ干渉、信号の非定常性、および正確な感情分類を行う脳活動の固有の複雑さにより、大きなハードルに直面している。
本研究では,Fourier-based periodic analysisとグラフ駆動構造モデリングをシームレスに統合する新しいフレームワークであるFourier Adjacency Transformerを提案する。
提案手法はまず,新しいフーリエに着想を得たモジュールを用いて,組込み脳波信号から周期的特徴を抽出し,非周期的成分から効果的に分離する。
次に,これらのパターンをサンプルベースパターンと結合させて,共通チャネル間相関パターンを強化するために,アジャシエイトアテンション方式を用いる。
SEEDおよびDEAPデータセットの実証評価により,本手法が既存の最先端技術を超え,認識精度が約6.5%向上したことを示す。
周期性と構造的洞察を統一することにより、このフレームワークは脳波の感情分析における将来の研究に有望な方向を提供する。
関連論文リスト
- Milmer: a Framework for Multiple Instance Learning based Multimodal Emotion Recognition [16.616341358877243]
本研究は,表情解析と脳波信号の統合による感情認識の課題に対処する。
提案するフレームワークは、視覚的および生理的モダリティを効果的に統合するために、トランスフォーマーベースの融合アプローチを採用している。
この研究の重要な革新は、複数の表情画像から意味のある情報を抽出する多重インスタンス学習(MIL)アプローチの採用である。
論文 参考訳(メタデータ) (2025-02-01T20:32:57Z) - Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification [0.0]
マルチモーダル感情分析モデルは、感情分類を強化するために、テキスト、音声、視覚データを統合します。
研究は,後期核融合,早期核融合,多面的注意の3つの特徴核融合戦略を評価する。
プロセスの初期にモダリティを統合することで感情分類が促進され、注意機構が現在のフレームワークに限られた影響を与える可能性があることが示唆されている。
論文 参考訳(メタデータ) (2025-01-14T12:54:19Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
本研究では、拡散モデルと強化学習を統合することにより、脳波(EEG)信号の合成に革新的なアプローチを導入する。
提案手法は, 時間的・スペクトル的特徴の詳細な脳波信号の生成を促進させ, 合成データセットの信頼性と多様性を向上する。
論文 参考訳(メタデータ) (2024-09-14T07:22:31Z) - MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [3.840859750115109]
音楽誘発脳波(EEG)記録のマルチモーダルコレクションであるMEEGデータセットについて述べる。
本稿では,脳波に基づく感情認識のための新しいフレームワークである動的グラフニューラルネットワーク(AT-DGNN)を用いた注意に基づく時間学習について紹介する。
論文 参考訳(メタデータ) (2024-07-08T01:58:48Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
脳波分析の鍵となる目的は、基礎となる神経活動(コンテンツ)を抽出し、個体の変動(スタイル)を考慮することである。
近年の音声変換技術の発展に触発されて,脳波変換を直接最適化するCSLP-AEフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。