論文の概要: Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification
- arxiv url: http://arxiv.org/abs/2501.08085v1
- Date: Tue, 14 Jan 2025 12:54:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:57.488028
- Title: Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification
- Title(参考訳): 動的マルチモーダル感性分析:可能分類のためのクロスモーダル注意の活用
- Authors: Hui Lee, Singh Suniljit, Yong Siang Ong,
- Abstract要約: マルチモーダル感情分析モデルは、感情分類を強化するために、テキスト、音声、視覚データを統合します。
研究は,後期核融合,早期核融合,多面的注意の3つの特徴核融合戦略を評価する。
プロセスの初期にモダリティを統合することで感情分類が促進され、注意機構が現在のフレームワークに限られた影響を与える可能性があることが示唆されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper explores the development of a multimodal sentiment analysis model that integrates text, audio, and visual data to enhance sentiment classification. The goal is to improve emotion detection by capturing the complex interactions between these modalities, thereby enabling more accurate and nuanced sentiment interpretation. The study evaluates three feature fusion strategies -- late stage fusion, early stage fusion, and multi-headed attention -- within a transformer-based architecture. Experiments were conducted using the CMU-MOSEI dataset, which includes synchronized text, audio, and visual inputs labeled with sentiment scores. Results show that early stage fusion significantly outperforms late stage fusion, achieving an accuracy of 71.87\%, while the multi-headed attention approach offers marginal improvement, reaching 72.39\%. The findings suggest that integrating modalities early in the process enhances sentiment classification, while attention mechanisms may have limited impact within the current framework. Future work will focus on refining feature fusion techniques, incorporating temporal data, and exploring dynamic feature weighting to further improve model performance.
- Abstract(参考訳): 本稿では、感情分類を強化するために、テキスト、音声、視覚データを統合したマルチモーダル感情分析モデルの開発について検討する。
目的は、これらのモダリティ間の複雑な相互作用を捉え、より正確でニュアンスのある感情解釈を可能にすることにより、感情の検出を改善することである。
この研究は、トランスフォーマーベースのアーキテクチャにおいて、3つの機能融合戦略(後期核融合、初期核融合、マルチヘッドアテンション)を評価する。
CMU-MOSEIデータセットを用いて、感情スコアをラベル付けしたテキスト、音声、視覚入力を含む実験を行った。
その結果, 早期核融合は後期核融合より有意に優れ, 精度は71.87\%, マルチヘッドアテンションアプローチは限界改善であり, 72.39\%に達した。
これらの結果から,早期にモダリティを統合することで感情分類が促進され,注意機構が現在の枠組みに限られた影響を及ぼす可能性が示唆された。
今後は、機能融合技術の改良、時間的データの導入、動的な機能重み付けによるモデルパフォーマンスの向上に注力していく予定である。
関連論文リスト
- GCM-Net: Graph-enhanced Cross-Modal Infusion with a Metaheuristic-Driven Network for Video Sentiment and Emotion Analysis [2.012311338995539]
本稿では,発話からのマルチモーダルな文脈情報を活用し,メタヒューリスティックなアルゴリズムを用いて発話レベルの感情と感情予測を学習する新しい枠組みを提案する。
提案手法の有効性を示すため,我々は3つの顕著なマルチモーダル・ベンチマーク・データセットについて広範な評価を行った。
論文 参考訳(メタデータ) (2024-10-02T10:07:48Z) - AUD-TGN: Advancing Action Unit Detection with Temporal Convolution and GPT-2 in Wild Audiovisual Contexts [8.809586885539002]
音声・視覚的マルチモーダルデータを利用した新しい手法を提案する。
本手法は,Mel Frequency Cepstral Coefficients (MFCC) とLog-Mel Spectrogram を,事前学習したVGGishネットワークと共に利用することにより,音声特徴抽出を強化する。
本手法は,データの時間的・文脈的ニュアンスを理解することにより,AU検出の精度を著しく向上させ,複雑なシナリオの理解における重要な進歩を示す。
論文 参考訳(メタデータ) (2024-03-20T15:37:19Z) - Recursive Joint Cross-Modal Attention for Multimodal Fusion in Dimensional Emotion Recognition [3.5803801804085347]
本稿では,RJCMA(Recursive Joint Cross-Modal Attention)を導入し,音声,視覚,テキストの両モード間の相互関係を次元的感情認識のために捉える。
特に,共同音声・視覚・テキスト特徴表現と個々のモーダルの特徴表現との相互相関に基づく注目重みの計算を行う。
Affwild2データセット上で提案した核融合モデルの性能を評価するために大規模な実験を行った。
論文 参考訳(メタデータ) (2024-03-20T15:08:43Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
我々は、テキスト記述から高レベルなセマンティクスを活用し、赤外線と可視画像のセマンティクスを統合するテキスト誘導多モード画像融合法を提案する。
本手法は,視覚的に優れた融合結果を生成するだけでなく,既存の手法よりも高い検出mAPを達成し,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-31T08:13:47Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - Progressive Fusion for Multimodal Integration [12.94175198001421]
本稿では,後期融合表現の問題を緩和する,プログレッシブ・フュージョン(Progressive Fusion)と呼ばれる反復的表現洗練手法を提案する。
提案手法は,MSEの5%削減,マルチモーダル時系列予測におけるロバストネスの40%向上など,一貫した性能向上を図っている。
論文 参考訳(メタデータ) (2022-09-01T09:08:33Z) - Self-attention fusion for audiovisual emotion recognition with
incomplete data [103.70855797025689]
視覚的感情認識を応用したマルチモーダルデータ解析の問題点を考察する。
本稿では、生データから学習可能なアーキテクチャを提案し、その3つの変種を異なるモダリティ融合機構で記述する。
論文 参考訳(メタデータ) (2022-01-26T18:04:29Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
マルチモーダル融合に対する最近のディープラーニングアプローチは、ハイレベルおよびミドルレベルの潜在モダリティ表現のボトムアップ融合に依存している。
人間の知覚モデルでは、高レベルの表現が感覚入力の知覚に影響を及ぼすトップダウン融合の重要性を強調している。
本稿では,ネットワークトレーニング中のフォワードパスにおけるフィードバック機構を用いて,トップダウンのクロスモーダルインタラクションをキャプチャするニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-24T17:48:04Z) - Cross Attentional Audio-Visual Fusion for Dimensional Emotion Recognition [13.994609732846344]
最も効果的な感情認識技術は、多種多様な情報ソースを効果的に活用する。
本稿では,音声視覚(A-V)モダリティ間で有意な特徴を抽出するための相互注意型融合手法を提案する。
その結果、我々のA-V融合モデルは、最先端の融合アプローチよりも優れたコスト効率のアプローチであることが示唆された。
論文 参考訳(メタデータ) (2021-11-09T16:01:56Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Interactive Fusion of Multi-level Features for Compositional Activity
Recognition [100.75045558068874]
インタラクティブな融合によってこの目標を達成する新しいフレームワークを提案する。
本フレームワークは,位置から出現までの特徴抽出,意味的特徴の相互作用,意味から位置への予測という3つのステップで実装する。
我々は,2つの行動認識データセット,SomethingとCharadesに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-12-10T14:17:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。