論文の概要: Cross-Subject Depression Level Classification Using EEG Signals with a Sample Confidence Method
- arxiv url: http://arxiv.org/abs/2503.13475v1
- Date: Tue, 04 Mar 2025 13:16:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 07:08:06.006388
- Title: Cross-Subject Depression Level Classification Using EEG Signals with a Sample Confidence Method
- Title(参考訳): サンプル信頼法による脳波信号を用いた物体間圧縮レベル分類
- Authors: ZhongYi Zhang, ChenYang Xu, LiXuan Zhao, HuiRang Hou, QingHao Meng,
- Abstract要約: GCNモデルに基づく抑うつレベル分類
モデル学習パターンに触発されて、2つの新しいモジュールを導入しました。
DepL-GCNは81.13%、81.36%の精度を達成した。
- 参考スコア(独自算出の注目度): 8.832488069619947
- License:
- Abstract: Electroencephalogram (EEG) is a non-invasive tool for real-time neural monitoring,widely used in depression detection via deep learning. However, existing models primarily focus on binary classification (depression/normal), lacking granularity for severity assessment. To address this, we proposed the DepL-GCN, i.e., Depression Level classification based on GCN model. This model tackles two key challenges: (1) subjectivity in depres-sion-level labeling due to patient self-report biases, and (2) class imbalance across severity categories. Inspired by the model learning patterns, we introduced two novel modules: the sample confidence module and the minority sample penalty module. The former leverages the L2-norm of prediction errors to progressively filter EEG samples with weak label alignment during training, thereby reducing the impact of subjectivity; the latter automatically upweights misclassified minority-class samples to address imbalance issues. After testing on two public EEG datasets, DepL-GCN achieved accuracies of 81.13% and 81.36% for multi-class severity recognition, outperforming baseline models.Ablation studies confirmed both modules' contributions. We further discussed the strengths and limitations of regression-based models for depression-level recognition.
- Abstract(参考訳): 脳波(Electroencephalogram、EEG)は、リアルタイム神経モニタリングのための非侵襲的なツールであり、深層学習による抑うつ検出に広く用いられている。
しかし、既存のモデルは、主に二分分類(抑うつ/正規化)に焦点を当てており、重度評価の粒度が不足している。
そこで我々は,GCNモデルに基づくDepL-GCN,すなわち抑うつレベル分類を提案する。
本モデルは,(1)患者自己申告バイアスによる退行レベルのラベル付けの主観性,(2)重度カテゴリー間のクラス不均衡という2つの課題に対処する。
モデル学習パターンに触発されて,サンプル信頼モジュールと少数サンプルペナルティモジュールという2つの新しいモジュールを導入した。
前者は予測誤差のL2ノルムを利用して、トレーニング中にラベルアライメントの弱い脳波サンプルを段階的にフィルタリングし、主観性の影響を減らす。
2つのパブリックEEGデータセットでテストした後、DepL-GCNはマルチクラスの重度認識において81.13%と81.36%の精度を達成した。
さらに,抑うつレベル認識のための回帰モデルの有効性と限界について考察した。
関連論文リスト
- STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data [12.344849949026989]
時間的特徴と空間的特徴の両方を捉えるために,CNNとRNNを統合してうつ病を診断するための時空間アグリゲーションネットワーク(STANet)を提案する。
実験の結果、STANetは82.38%の精度と90.72%のAUCでうつ病診断性能に優れていた。
論文 参考訳(メタデータ) (2024-07-31T04:06:47Z) - Iterative Online Image Synthesis via Diffusion Model for Imbalanced
Classification [29.730360798234294]
医用画像分類におけるクラス不均衡問題に対処するための反復オンライン画像合成フレームワークを提案する。
このフレームワークにはオンライン画像合成(OIS)と精度適応サンプリング(AAS)という2つの重要なモジュールが組み込まれている。
不均衡な分類に対処するための提案手法の有効性を評価するため,HAM10000およびAPTOSデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-03-13T10:51:18Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC) と呼ばれる新しいアプローチを導入する。
トレーニング過程におけるモデルパラメータのクラスバイアスを推定する。
非ラベル標本に対してモデルの擬似ラベルに二次補正を適用する。
論文 参考訳(メタデータ) (2023-12-27T15:06:36Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - Pre-training Language Model as a Multi-perspective Course Learner [103.17674402415582]
本研究では,サンプル効率のよい事前学習のためのマルチパースペクティブ・コース・ラーニング(MCL)手法を提案する。
本研究では,3つの自己超越コースが,「綱引き」力学の固有の欠陥を軽減するように設計されている。
本手法は,GLUEおよびSQuAD 2.0ベンチマークにおいて,ELECTRAの平均性能をそれぞれ2.8%,絶対点を3.2%向上させる。
論文 参考訳(メタデータ) (2023-05-06T09:02:10Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Speech based Depression Severity Level Classification Using a
Multi-Stage Dilated CNN-LSTM Model [5.419077350924331]
抑うつ分類タスクを重症度レベルの分類問題として定式化し、分類結果により粒度を提供する。
我々は,精神運動の減速によって生じる神経運動の調整の変化を捉えるために,調音コーディネート機能(ACF)を開発した。
論文 参考訳(メタデータ) (2021-04-09T05:10:08Z) - Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion
Classification [5.642359877598896]
本稿では,小・不均衡なデータセットに基づく皮膚病変の単一モデル分類のための新しいデータ拡張戦略を提案する。
このデータセット上で、様々なDCNNがトレーニングされ、適度な複雑さを持つモデルがより大きなモデルより優れていることを示す。
修正RandAugmentとMulti-weighted Focal Lossを1つのDCNNモデルで組み合わせることで、ISIC 2018チャレンジテストデータセット上の複数のアンサンブルモデルに匹敵する分類精度を達成した。
論文 参考訳(メタデータ) (2021-02-02T03:48:55Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。