Neuromorphic Computing with AER using Time-to-Event-Margin Propagation
- URL: http://arxiv.org/abs/2304.13918v1
- Date: Thu, 27 Apr 2023 02:01:54 GMT
- Title: Neuromorphic Computing with AER using Time-to-Event-Margin Propagation
- Authors: Madhuvanthi Srivatsav R, Shantanu Chakrabartty and Chetan Singh Thakur
- Abstract summary: We show how causal temporal primitives like delay, triggering, and sorting inherent in the AER protocol can be exploited for scalable neuromorphic computing.
The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect delays for memory and computing.
As a proof-of-concept, we show that a trained TEMP-based convolutional neural network (CNN) can demonstrate an accuracy greater than 99% on the MNIST dataset.
- Score: 7.730429080477441
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Address-Event-Representation (AER) is a spike-routing protocol that allows
the scaling of neuromorphic and spiking neural network (SNN) architectures to a
size that is comparable to that of digital neural network architectures.
However, in conventional neuromorphic architectures, the AER protocol and, in
general, any virtual interconnect plays only a passive role in computation,
i.e., only for routing spikes and events. In this paper, we show how causal
temporal primitives like delay, triggering, and sorting inherent in the AER
protocol itself can be exploited for scalable neuromorphic computing using our
proposed technique called Time-to-Event Margin Propagation (TEMP). The proposed
TEMP-based AER architecture is fully asynchronous and relies on interconnect
delays for memory and computing as opposed to conventional and local
multiply-and-accumulate (MAC) operations. We show that the time-based encoding
in the TEMP neural network produces a spatio-temporal representation that can
encode a large number of discriminatory patterns. As a proof-of-concept, we
show that a trained TEMP-based convolutional neural network (CNN) can
demonstrate an accuracy greater than 99% on the MNIST dataset. Overall, our
work is a biologically inspired computing paradigm that brings forth a new
dimension of research to the field of neuromorphic computing.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons [0.26963330643873434]
This paper introduces a spiking neural network (SNN) for a hardware-friendly physical reservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS) platform.
We demonstrate RC through short-term memory and exclusive OR tasks, and the spoken digit recognition task with an accuracy of 97.7%.
arXiv Detail & Related papers (2024-09-18T00:23:00Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
Spiking Neural Networks (SNNs) are known for their bio-plausibility and energy efficiency.
In this work, we explore the merger of novel computing and information encoding schemes in SNN architectures.
We investigate the tradeoffs of our proposal in terms of accuracy, inference latency, spiking sparsity, energy consumption, and datasets.
arXiv Detail & Related papers (2024-04-26T22:52:23Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
The brain computer interface (BCI) is a nonstimulatory direct and occasionally bidirectional communication link between the brain and a computer or an external device.
We present a deep neural network architecture specifically engineered to provide state-of-the-art performance in multiclass motor imagery classification.
arXiv Detail & Related papers (2022-08-04T09:00:34Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.