Analysis of Learning-based Offshore Wind Power Prediction Models with Various Feature Combinations
- URL: http://arxiv.org/abs/2503.13493v1
- Date: Mon, 10 Mar 2025 18:28:24 GMT
- Title: Analysis of Learning-based Offshore Wind Power Prediction Models with Various Feature Combinations
- Authors: Linhan Fang, Fan Jiang, Ann Mary Toms, Xingpeng Li,
- Abstract summary: This paper investigates the effectiveness of various machine learning models in predicting offshore wind power for a site near the Gulf of Mexico.<n>Using wind speed as the output feature improves prediction accuracy by approximately 10% compared to using wind power as the output.
- Score: 4.809911165968602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate wind speed prediction is crucial for designing and selecting sites for offshore wind farms. This paper investigates the effectiveness of various machine learning models in predicting offshore wind power for a site near the Gulf of Mexico by analyzing meteorological data. After collecting and preprocessing meteorological data, nine different input feature combinations were designed to assess their impact on wind power predictions at multiple heights. The results show that using wind speed as the output feature improves prediction accuracy by approximately 10% compared to using wind power as the output. In addition, the improvement of multi-feature input compared with single-feature input is not obvious mainly due to the poor correlation among key features and limited generalization ability of models. These findings underscore the importance of selecting appropriate output features and highlight considerations for using machine learning in wind power forecasting, offering insights that could guide future wind power prediction models and conversion techniques.
Related papers
- Explainable Modeling for Wind Power Forecasting: A Glass-Box Approach
with High Accuracy [42.640766130080415]
The paper proposes a glass-box approach that combines high accuracy with transparency for wind power forecasting.
The proposed glass-box approach effectively interprets the results of wind power forecasting from both global and instance perspectives.
arXiv Detail & Related papers (2023-10-28T07:56:42Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
We propose an Asymmetric Receptive Field Autoencoder (ARFA) model, which introduces corresponding sizes of receptive field modules.
In the encoder, we present large kernel module for globaltemporal feature extraction. In the decoder, we develop a small kernel module for localtemporal reconstruction.
We construct the RainBench, a large-scale radar echo dataset for precipitation prediction, to address the scarcity of meteorological data in the domain.
arXiv Detail & Related papers (2023-09-01T07:55:53Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Wind power predictions from nowcasts to 4-hour forecasts: a learning
approach with variable selection [1.4623784198777086]
We study the prediction of short term wind speed and wind power (every 10 minutes up to 4 hours ahead)
For the wind power prediction, we also compare the indirect approach (wind speed predictions passed through a power curve) and the indirect one (directly predict wind power)
arXiv Detail & Related papers (2022-04-20T10:09:22Z) - Knowledge distillation with error-correcting transfer learning for wind
power prediction [6.385624548310884]
This paper proposes a novel framework with mathematical underpinnings for turbine power prediction.
It is developed on favorable knowledge distillation and transfer learning parameters tuning.
Results reveal that the proposed framework, developed on favorable knowledge distillation and transfer learning parameters tuning, yields performance boosts from 3.3 % to 23.9 % over its competitors.
arXiv Detail & Related papers (2022-04-01T18:31:47Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis [42.68418705495523]
This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms.
A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms.
Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation is less volatile than that of a single wind farm.
arXiv Detail & Related papers (2021-10-07T11:57:16Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Calibration of wind speed ensemble forecasts for power generation [0.0]
In the last decades wind power became the second largest energy source in the EU covering 16% of its electricity demand.
Due to its volatility, accurate short range wind power predictions are required for successful integration of wind energy into the electrical grid.
We show that compared with the raw ensemble, post-processing always improves the calibration of probabilistic and accuracy of point forecasts.
arXiv Detail & Related papers (2021-04-30T11:18:03Z) - Wind Speed Prediction and Visualization Using Long Short-Term Memory
Networks (LSTM) [1.8495489370732452]
This paper proposes the prediction of wind speed that simplifies wind farm planning and feasibility study.
The results show a deep learning approach, long short-term memory (LSTM) outperforms other models with the highest accuracy of 97.8%.
arXiv Detail & Related papers (2020-05-22T17:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.