Is Limited Participant Diversity Impeding EEG-based Machine Learning?
- URL: http://arxiv.org/abs/2503.13497v1
- Date: Tue, 11 Mar 2025 12:04:59 GMT
- Title: Is Limited Participant Diversity Impeding EEG-based Machine Learning?
- Authors: Philipp Bomatter, Henry Gouk,
- Abstract summary: It is common practice to split EEG recordings into small segments, thereby increasing the number of samples.<n>We conceptualise this as a multi-level data generation process and investigate the scaling behaviour of model performance.<n>We then use the same framework to investigate the effectiveness of different ML strategies designed to address limited data problems.
- Score: 12.258707843214946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of machine learning (ML) to electroencephalography (EEG) has great potential to advance both neuroscientific research and clinical applications. However, the generalisability and robustness of EEG-based ML models often hinge on the amount and diversity of training data. It is common practice to split EEG recordings into small segments, thereby increasing the number of samples substantially compared to the number of individual recordings or participants. We conceptualise this as a multi-level data generation process and investigate the scaling behaviour of model performance with respect to the overall sample size and the participant diversity through large-scale empirical studies. We then use the same framework to investigate the effectiveness of different ML strategies designed to address limited data problems: data augmentations and self-supervised learning. Our findings show that model performance scaling can be severely constrained by participant distribution shifts and provide actionable guidance for data collection and ML research.
Related papers
- Comprehensive Benchmarking of Machine Learning Methods for Risk Prediction Modelling from Large-Scale Survival Data: A UK Biobank Study [0.0]
Large-scale prospective cohort studies and a diverse toolkit of available machine learning (ML) algorithms have facilitated such survival task efforts.<n>We sought to benchmark eight distinct survival task implementations, ranging from linear to deep learning (DL) models.<n>We assessed how well different architectures scale with sample sizes ranging from n = 5,000 to n = 250,000 individuals.
arXiv Detail & Related papers (2025-03-11T20:27:20Z) - dsLassoCov: a federated machine learning approach incorporating covariate control [3.2203047133326645]
Federated learning allows the direct, privacy preserving training of machine learning models using geographically distributed datasets.<n>We introduce dsLassoCov, a machine learning approach designed to control for covariate effects.<n>We demonstrate that dsLassoCov can efficiently and effectively manage confounding effects during model training.
arXiv Detail & Related papers (2024-12-11T00:03:52Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
High variability across subjects poses a significant challenge when it comes to deploying machine learning models for classification tasks in the real world.
In such instances, machine learning models that exhibit exceptional performance on a specific dataset may not necessarily demonstrate similar proficiency when applied to a distinct dataset for the same task.
We introduce Transfer Euclidean Alignment - a transfer learning technique to tackle the problem of the robustness of human biomedical data for training deep learning models.
arXiv Detail & Related papers (2023-10-03T19:48:02Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Knowledge Distillation for Brain Tumor Segmentation [0.0]
We study the relationship between the performance of the model and the amount of data employed during the training process.
A single model trained with additional data achieves performance close to the ensemble of multiple models and outperforms individual methods.
arXiv Detail & Related papers (2020-02-10T12:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.