Feasibility study for reconstruction of knee MRI from one corresponding X-ray via CNN
- URL: http://arxiv.org/abs/2503.13555v1
- Date: Sun, 16 Mar 2025 21:09:17 GMT
- Title: Feasibility study for reconstruction of knee MRI from one corresponding X-ray via CNN
- Authors: Zhe Wang, Aladine Chetouani, Rachid Jennane,
- Abstract summary: We propose in this paper a deep-learning-based approach for generating MRI from one corresponding X-ray.<n>Our method uses the hidden variables of a Convolutional Auto-Encoder (CAE) model, trained for reconstructing X-ray image, as inputs of a generator model to provide 3D MRI.
- Score: 7.46904353981184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generally, X-ray, as an inexpensive and popular medical imaging technique, is widely chosen by medical practitioners. With the development of medical technology, Magnetic Resonance Imaging (MRI), an advanced medical imaging technique, has already become a supplementary diagnostic option for the diagnosis of KOA. We propose in this paper a deep-learning-based approach for generating MRI from one corresponding X-ray. Our method uses the hidden variables of a Convolutional Auto-Encoder (CAE) model, trained for reconstructing X-ray image, as inputs of a generator model to provide 3D MRI.
Related papers
- RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - Feasibility Study of a Diffusion-Based Model for Cross-Modal Generation of Knee MRI from X-ray: Integrating Radiographic Feature Information [8.466319668322432]
Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, often diagnosed using X-rays due to its cost-effectiveness.<n>Magnetic Resonance Imaging (MRI) provides superior soft tissue visualization and serves as a valuable supplementary diagnostic tool.
arXiv Detail & Related papers (2024-10-09T15:44:34Z) - Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis [3.881664394416534]
It is necessary to perform automatic segmentation of brain tumors on MRI images.
This project intends to build an MRI algorithm based on U-Net.
arXiv Detail & Related papers (2024-05-23T04:33:12Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
We propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields.
We show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.
arXiv Detail & Related papers (2023-11-10T02:47:15Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - X-ray Dissectography Enables Stereotography to Improve Diagnostic
Performance [5.357314252311141]
We propose "x-ray dissectography" to extract a target organ/tissue digitally from few radiographic projections.
Experiments show that x-ray stereography can be achieved of an isolated organ such as the lungs.
x-ray dissectography promises to be a new x-ray imaging modality for CT-grade diagnosis at radiation dose and system cost comparable to that of radiographic or tomosynthetic imaging.
arXiv Detail & Related papers (2021-11-30T00:31:59Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.