Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis
- URL: http://arxiv.org/abs/2406.18548v1
- Date: Thu, 23 May 2024 04:33:12 GMT
- Title: Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis
- Authors: Yuxiang Hu, Haowei Yang, Ting Xu, Shuyao He, Jiajie Yuan, Haozhang Deng,
- Abstract summary: It is necessary to perform automatic segmentation of brain tumors on MRI images.
This project intends to build an MRI algorithm based on U-Net.
- Score: 3.881664394416534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diagnosis of brain cancer relies heavily on medical imaging techniques, with MRI being the most commonly used. It is necessary to perform automatic segmentation of brain tumors on MRI images. This project intends to build an MRI algorithm based on U-Net. The residual network and the module used to enhance the context information are combined, and the void space convolution pooling pyramid is added to the network for processing. The brain glioma MRI image dataset provided by cancer imaging archives was experimentally verified. A multi-scale segmentation method based on a weighted least squares filter was used to complete the 3D reconstruction of brain tumors. Thus, the accuracy of three-dimensional reconstruction is further improved. Experiments show that the local texture features obtained by the proposed algorithm are similar to those obtained by laser scanning. The algorithm is improved by using the U-Net method and an accuracy of 0.9851 is obtained. This approach significantly enhances the precision of image segmentation and boosts the efficiency of image classification.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Mask-Guided Attention U-Net for Enhanced Neonatal Brain Extraction and Image Preprocessing [0.9674145073701153]
We introduce MGA-Net, a novel mask-guided attention neural network.
It is designed to extract the brain from other structures and reconstruct high-quality brain images.
We extensively validated the proposed MGA-Net on diverse datasets from varied clinical settings and neonatal age groups.
arXiv Detail & Related papers (2024-06-25T16:48:18Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Multiclass MRI Brain Tumor Segmentation using 3D Attention-based U-Net [0.0]
This paper proposes a 3D attention-based U-Net architecture for multi-region segmentation of brain tumors.
The attention mechanism helps to improve segmentation accuracy by de-emphasizing healthy tissues and accentuating malignant tissues.
arXiv Detail & Related papers (2023-05-10T14:35:07Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - 3D Brainformer: 3D Fusion Transformer for Brain Tumor Segmentation [6.127298607534532]
Deep learning has recently emerged to improve brain tumor segmentation.
Transformers have been leveraged to address the limitations of convolutional networks.
We propose a 3D Transformer-based segmentation approach.
arXiv Detail & Related papers (2023-04-28T02:11:29Z) - Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images [4.3310896118860445]
This paper proposes a lightweight implementation of U-Net for brain tumor segmentation.
The proposed architecture does not need large amount of data to train the proposed lightweight U-Net.
The lightweight U-Net shows very promising results on BITE dataset and it achieves a mean intersection-over-union (IoU) of 89%.
arXiv Detail & Related papers (2022-11-03T15:19:58Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.