論文の概要: ML-SpecQD: Multi-Level Speculative Decoding with Quantized Drafts
- arxiv url: http://arxiv.org/abs/2503.13565v1
- Date: Mon, 17 Mar 2025 08:38:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:18:24.700298
- Title: ML-SpecQD: Multi-Level Speculative Decoding with Quantized Drafts
- Title(参考訳): ML-SpecQD: 量子ドラフトによるマルチレベル投機的デコーディング
- Authors: Evangelos Georganas, Dhiraj Kalamkar, Alexander Kozlov, Alexander Heinecke,
- Abstract要約: 16ビットモデル推論の精度を犠牲にすることなくLSM推論を高速化する手法として、投機復号法(SD)が登場した。
MXFP4Weight-Only-Quantization (WOQ)は、単にBF16ターゲットモデルの重みをMXFP4に直接キャストするだけなので、MXFP4モデルをプラグアンドプレイ方式でドラフトとして使用することを提案する。
私たちのプラグアンドプレイソリューションでは,BF16ベースラインの最大2倍のスピードアップを実現しています。
- 参考スコア(独自算出の注目度): 79.62448915248926
- License:
- Abstract: Speculative decoding (SD) has emerged as a method to accelerate LLM inference without sacrificing any accuracy over the 16-bit model inference. In a typical SD setup, the idea is to use a full-precision, small, fast model as "draft" to generate the next few tokens and use the "target" large model to verify the draft-generated tokens. The efficacy of this method heavily relies on the acceptance ratio of the draft-generated tokens and the relative token throughput of the draft versus the target model. Nevertheless, an efficient SD pipeline requires pre-training and aligning the draft model to the target model, making it impractical for LLM inference in a plug-and-play fashion. In this work, we propose using MXFP4 models as drafts in a plug-and-play fashion since the MXFP4 Weight-Only-Quantization (WOQ) merely direct-casts the BF16 target model weights to MXFP4. In practice, our plug-and-play solution gives speedups up to 2x over the BF16 baseline. Then we pursue an opportunity for further acceleration: the MXFP4 draft token generation itself can be accelerated via speculative decoding by using yet another smaller draft. We call our method ML-SpecQD: Multi-Level Speculative Decoding with Quantized Drafts since it recursively applies speculation for accelerating the draft-token generation. Combining Multi-Level Speculative Decoding with MXFP4 Quantized Drafts we outperform state-of-the-art speculative decoding, yielding speedups up to 2.72x over the BF16 baseline.
- Abstract(参考訳): 16ビットモデル推論の精度を犠牲にすることなくLSM推論を高速化する手法として、投機復号法(SD)が登場した。
典型的なSDセットアップでは、完全な、小さく、高速なモデルを"ドラフト"として使用して、次の数個のトークンを生成し、"ターゲット"の大きなモデルを使用して、ドラフト生成されたトークンを検証する。
本手法の有効性は, 原案生成トークンの受入率と原案と対象モデルとの相対トークンスループットに大きく依存する。
それでも効率的なSDパイプラインでは、ドラフトモデルをターゲットモデルに事前のトレーニングと調整が必要であり、プラグ・アンド・プレイ方式でLLM推論を行うには実用的ではない。
本稿では,MXFP4 の重み付けを MXFP4 にのみ直接キャストするため,MXFP4 モデルをプラグアンドプレイ方式でドラフトとして使用することを提案する。
私たちのプラグアンドプレイソリューションでは,BF16ベースラインの最大2倍のスピードアップを実現しています。
MXFP4ドラフトトークン生成自体は、さらに小さなドラフトを使用することで、投機的復号化によって加速することができる。
本手法をML-SpecQDと呼ぶ: ドラフトトケン生成を高速化するための投機を再帰的に適用するため、量子ドラフトを用いたマルチレベル投機デコーディングを行う。
Multi-Level Speculative Decoding と MXFP4 Quantized Drafts を組み合わせることで、BF16ベースラインの2.72倍の高速化を実現した。
関連論文リスト
- EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization [11.31996515243674]
EasySpecは、マルチGPU利用効率を最適化する層並列投機戦略である。
バニラ復号と比較してピーク速度は4.17倍に達する。
ドラフトステージは最大1.62倍まで加速でき、最大精度は7%しか低下しない。
論文 参考訳(メタデータ) (2025-02-04T17:09:21Z) - The Power of Negative Zero: Datatype Customization for Quantized Large Language Models [5.503925076208333]
学習後の量子化は、大規模言語モデル(LLM)のメモリと計算要求を緩和する最もハードウェア効率の良い方法の1つである。
本稿では,基本FPデータ型を拡張して冗長ゼロリマッピング(RaZeR)を行う。
RaZeRは、負のゼロFPエンコーディングを、FP量子化エンコーディングを最大限活用し、数値分布をよりよく適合させるために、予め定義された特別な値のセットに再マップする。
論文 参考訳(メタデータ) (2025-01-06T22:40:40Z) - PEARL: Parallel Speculative Decoding with Adaptive Draft Length [12.166703341906242]
本稿では,適応dRaft Length(PEARL)を用いた投機的復号化(Parallel speculative decoding)を促進するための,概念的にシンプルでフレキシブルで汎用的なフレームワークを提案する。
PEARLは、ドラフトフェーズ中に事前に最初のドラフトトークンを検証し、検証フェーズ中により多くのドラフトトークンを生成するための後検証を提案する。
各種テキスト生成ベンチマークの実験では、PEARLの有効性が実証されており、自動回帰復号法とバニラ投機復号法と比較して、パフォーマンスが4.43$times$と1.50$times$に向上した。
論文 参考訳(メタデータ) (2024-08-13T08:32:06Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
投機的復号(SD)は、複数のトークンを生成するためにより高速なドラフトモデルを使用することで、大きな言語モデル推論を加速する。
本稿では,SDを適用する前に,知識蒸留を用いて,ドラフトモデルとターゲットモデルとの整合性を向上するDistillSpecを提案する。
DistillSpecは標準SDよりも10~45%のスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-10-12T16:21:04Z) - Online Speculative Decoding [34.987825705622555]
大規模言語モデルの推論を高速化するオンライン投機的復号法を導入する。
主なアイデアは、観測されたユーザクエリデータに対する(複数)ドラフトモデルを継続的に更新することである。
本稿では,知識蒸留に基づくオンライン投機的デコーディングのプロトタイプを開発し,合成データと実データの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-10-11T04:03:42Z) - Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding [25.03122689338891]
本稿では,大規模言語モデルの高速化を目的とした新しい推論手法である自己推論復号法を提案する。
提案手法では、追加のニューラルネットワークトレーニングや、追加のメモリフットプリントを必要としない。
LLaMA-2とその変種によるベンチマークでは、最大1.99$times$まで高速化された。
論文 参考訳(メタデータ) (2023-09-15T05:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。