論文の概要: Bayesian Kernel Regression for Functional Data
- arxiv url: http://arxiv.org/abs/2503.13676v1
- Date: Mon, 17 Mar 2025 19:28:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:54.451996
- Title: Bayesian Kernel Regression for Functional Data
- Title(参考訳): 関数データに対するベイジアンカーネル回帰
- Authors: Minoru Kusaba, Megumi Iwayama, Ryo Yoshida,
- Abstract要約: 教師付き学習では、予測される出力変数はしばしば関数として表現される。
カーネル手法に基づく関数出力回帰モデルを提案する。
- 参考スコア(独自算出の注目度): 1.4501446815590895
- License:
- Abstract: In supervised learning, the output variable to be predicted is often represented as a function, such as a spectrum or probability distribution. Despite its importance, functional output regression remains relatively unexplored. In this study, we propose a novel functional output regression model based on kernel methods. Unlike conventional approaches that independently train regressors with scalar outputs for each measurement point of the output function, our method leverages the covariance structure within the function values, akin to multitask learning, leading to enhanced learning efficiency and improved prediction accuracy. Compared with existing nonlinear function-on-scalar models in statistical functional data analysis, our model effectively handles high-dimensional nonlinearity while maintaining a simple model structure. Furthermore, the fully kernel-based formulation allows the model to be expressed within the framework of reproducing kernel Hilbert space (RKHS), providing an analytic form for parameter estimation and a solid foundation for further theoretical analysis. The proposed model delivers a functional output predictive distribution derived analytically from a Bayesian perspective, enabling the quantification of uncertainty in the predicted function. We demonstrate the model's enhanced prediction performance through experiments on artificial datasets and density of states prediction tasks in materials science.
- Abstract(参考訳): 教師付き学習では、予測される出力変数はしばしばスペクトルや確率分布などの関数として表される。
その重要性にも拘わらず、関数出力の回帰は比較的未調査のままである。
本研究では,カーネル手法に基づく関数型出力回帰モデルを提案する。
出力関数の各測定点に対するスカラー出力を独立に学習する従来の手法とは異なり,本手法ではマルチタスク学習と同様,関数値内の共分散構造を利用して学習効率の向上と予測精度の向上を実現している。
統計関数データ解析における既存の非線形関数オンスカラーモデルと比較して,本モデルは単純なモデル構造を維持しながら,高次元非線形性を効果的に処理する。
さらに、完全なカーネルベースの定式化により、モデルをカーネルヒルベルト空間(RKHS)を再現する枠組み内で表現することができ、パラメータ推定のための解析形式と、さらなる理論的解析のための強固な基礎を提供する。
提案モデルはベイズ的視点から解析的に導出した関数出力予測分布を提供し,予測関数の不確かさの定量化を可能にする。
人工データセットの実験と材料科学における状態予測タスクの密度によるモデルの拡張予測性能を実証する。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
本研究では,ベイズフレームワークにおける過パラメータ化非線形回帰の予測特性について検討した。
リプシッツ連続活性化関数を持つ一般化線形および単一ニューロンモデルに対して後部収縮が成立する。
提案手法は数値シミュレーションと実データアプリケーションを用いて検証した。
論文 参考訳(メタデータ) (2024-04-06T04:22:48Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Linear Stability Hypothesis and Rank Stratification for Nonlinear Models [3.0041514772139166]
モデルランクを「パラメータの有効サイズ」として発見するための一般非線形モデルのためのランク階層化を提案する。
これらの結果から、目標関数のモデルランクは、その回復を成功させるために、最小限のトレーニングデータサイズを予測する。
論文 参考訳(メタデータ) (2022-11-21T16:27:25Z) - Robust Output Analysis with Monte-Carlo Methodology [0.0]
シミュレーションや機械学習を用いた予測モデリングでは,推定値の品質を正確に評価することが重要である。
モンテカルロサンプリングのレンズによるシミュレーションと機械学習の出力の統一的な出力分析フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-27T16:21:59Z) - Functional Mixtures-of-Experts [0.24578723416255746]
観測対象が関数を含む状況下での予測のための異種データの統計的解析について検討する。
まず,機能的ME(FME)と呼ばれる新しいMEモデルのファミリーを提示する。
我々は,モデルに適合する最大パラメータ推定戦略を定式化したLasso-like (EM-Lasso) の専用予測-最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-04T17:32:28Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。