Bayesian Kernel Regression for Functional Data
- URL: http://arxiv.org/abs/2503.13676v1
- Date: Mon, 17 Mar 2025 19:28:27 GMT
- Title: Bayesian Kernel Regression for Functional Data
- Authors: Minoru Kusaba, Megumi Iwayama, Ryo Yoshida,
- Abstract summary: In supervised learning, the output variable to be predicted is often represented as a function.<n>We propose a novel functional output regression model based on kernel methods.
- Score: 1.4501446815590895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In supervised learning, the output variable to be predicted is often represented as a function, such as a spectrum or probability distribution. Despite its importance, functional output regression remains relatively unexplored. In this study, we propose a novel functional output regression model based on kernel methods. Unlike conventional approaches that independently train regressors with scalar outputs for each measurement point of the output function, our method leverages the covariance structure within the function values, akin to multitask learning, leading to enhanced learning efficiency and improved prediction accuracy. Compared with existing nonlinear function-on-scalar models in statistical functional data analysis, our model effectively handles high-dimensional nonlinearity while maintaining a simple model structure. Furthermore, the fully kernel-based formulation allows the model to be expressed within the framework of reproducing kernel Hilbert space (RKHS), providing an analytic form for parameter estimation and a solid foundation for further theoretical analysis. The proposed model delivers a functional output predictive distribution derived analytically from a Bayesian perspective, enabling the quantification of uncertainty in the predicted function. We demonstrate the model's enhanced prediction performance through experiments on artificial datasets and density of states prediction tasks in materials science.
Related papers
- Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model [3.7414278978078204]
We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics"
We develop an active learning algorithm synthesizing input signals to minimize estimation error.
arXiv Detail & Related papers (2025-04-07T20:36:06Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
This study explores the predictive properties of over parameterized nonlinear regression within the Bayesian framework.
Posterior contraction is established for generalized linear and single-neuron models with Lipschitz continuous activation functions.
The proposed method was validated via numerical simulations and a real data application.
arXiv Detail & Related papers (2024-04-06T04:22:48Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Linear Stability Hypothesis and Rank Stratification for Nonlinear Models [3.0041514772139166]
We propose a rank stratification for general nonlinear models to uncover a model rank as an "effective size of parameters"
By these results, model rank of a target function predicts a minimal training data size for its successful recovery.
arXiv Detail & Related papers (2022-11-21T16:27:25Z) - Robust Output Analysis with Monte-Carlo Methodology [0.0]
In predictive modeling with simulation or machine learning, it is critical to accurately assess the quality of estimated values.
We propose a unified output analysis framework for simulation and machine learning outputs through the lens of Monte Carlo sampling.
arXiv Detail & Related papers (2022-07-27T16:21:59Z) - Functional Mixtures-of-Experts [0.24578723416255746]
We consider the statistical analysis of heterogeneous data for prediction in situations where the observations include functions.
We first present a new family of ME models, named functional ME (FME) in which the predictors are potentially noisy observations.
We develop dedicated expectation--maximization algorithms for Lasso-like (EM-Lasso) regularized maximum-likelihood parameter estimation strategies to fit the models.
arXiv Detail & Related papers (2022-02-04T17:32:28Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.