MonoCT: Overcoming Monocular 3D Detection Domain Shift with Consistent Teacher Models
- URL: http://arxiv.org/abs/2503.13743v1
- Date: Mon, 17 Mar 2025 21:59:41 GMT
- Title: MonoCT: Overcoming Monocular 3D Detection Domain Shift with Consistent Teacher Models
- Authors: Johannes Meier, Louis Inchingolo, Oussema Dhaouadi, Yan Xia, Jacques Kaiser, Daniel Cremers,
- Abstract summary: We introduce a novel unsupervised domain adaptation approach, MonoCT, that generates highly accurate pseudo labels for self-supervision.<n>In experiments on six benchmarks, MonoCT outperforms existing SOTA domain adaptation methods by large margins.
- Score: 33.87605068407066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of monocular 3D object detection across different sensors, environments, and camera setups. In this paper, we introduce a novel unsupervised domain adaptation approach, MonoCT, that generates highly accurate pseudo labels for self-supervision. Inspired by our observation that accurate depth estimation is critical to mitigating domain shifts, MonoCT introduces a novel Generalized Depth Enhancement (GDE) module with an ensemble concept to improve depth estimation accuracy. Moreover, we introduce a novel Pseudo Label Scoring (PLS) module by exploring inner-model consistency measurement and a Diversity Maximization (DM) strategy to further generate high-quality pseudo labels for self-training. Extensive experiments on six benchmarks show that MonoCT outperforms existing SOTA domain adaptation methods by large margins (~21% minimum for AP Mod.) and generalizes well to car, traffic camera and drone views.
Related papers
- MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection [9.780498146964097]
We propose an innovative network architecture, MonoMM, for real-time monocular 3D object detection.
MonoMM consists of Focused Multi-Scale Fusion (FMF) and Depth-Aware Feature Enhancement Mamba (DMB) modules.
Our method outperforms previous monocular methods and achieves real-time detection.
arXiv Detail & Related papers (2024-08-01T10:16:58Z) - Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection [108.672972439282]
We introduce a novel decoupled pseudo-labeling (DPL) approach for SSM3OD.
Our approach features a Decoupled Pseudo-label Generation (DPG) module, designed to efficiently generate pseudo-labels.
We also present a DepthGradient Projection (DGP) module to mitigate optimization conflicts caused by noisy depth supervision of pseudo-labels.
arXiv Detail & Related papers (2024-03-26T05:12:18Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - Self-Supervised Monocular Depth Estimation by Direction-aware Cumulative
Convolution Network [80.19054069988559]
We find that self-supervised monocular depth estimation shows a direction sensitivity and environmental dependency.
We propose a new Direction-aware Cumulative Convolution Network (DaCCN), which improves the depth representation in two aspects.
Experiments show that our method achieves significant improvements on three widely used benchmarks.
arXiv Detail & Related papers (2023-08-10T14:32:18Z) - MonoViT: Self-Supervised Monocular Depth Estimation with a Vision
Transformer [52.0699787446221]
We propose MonoViT, a framework combining the global reasoning enabled by ViT models with the flexibility of self-supervised monocular depth estimation.
By combining plain convolutions with Transformer blocks, our model can reason locally and globally, yielding depth prediction at a higher level of detail and accuracy.
arXiv Detail & Related papers (2022-08-06T16:54:45Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.