論文の概要: Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models
- arxiv url: http://arxiv.org/abs/2503.13813v1
- Date: Tue, 18 Mar 2025 01:45:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:59.859449
- Title: Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models
- Title(参考訳): 大規模言語モデルに基づくマルチロボットタスク割り当てとスケジューリングのためのMILPモデルの自動構築
- Authors: Mingming Peng, Zhendong Chen, Jie Yang, Jin Huang, Zhengqi Shi, Qihao Liu, Xinyu Li, Liang Gao,
- Abstract要約: 既存の手法は、動的な生産制約に適応する際の課題に直面します。
企業には 生産スケジュールデータに対する 高いプライバシ要件があります
本研究では,知識強化型混合整数線形時間(MILP)自動フレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.960259962694126
- License:
- Abstract: With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
- Abstract(参考訳): インダストリアル4.0の開発が加速するにつれ、インテリジェントな製造システムでは、マルチロボットシステムにおける効率的なタスク割り当てとスケジューリングがますます求められている。
しかし、既存のメソッドはドメインの専門知識に依存しており、動的な生産制約に適応する上での課題に直面します。
さらに、企業は運用スケジュールデータに対して高いプライバシ要件を持ち、ソリューション開発にクラウドベースの大規模言語モデル(LLM)を使用することを防ぎます。
これらの課題に対処するためには、データのプライバシ要件を満たす自動モデリングソリューションが緊急必要である。
本研究では,自然言語記述から実行可能なコードを生成するために,局所LLMをドメイン固有の知識ベースと統合した知識拡張型混合整数線形プログラミング(MILP)自動定式化フレームワークを提案する。
このフレームワークは知識誘導型DeepSeek-R1-Distill-Qwen-32Bモデルを用いて複雑な時空間制約(平均精度82%)を抽出し、教師付き微調整Qwen2.5-Coder-7B-Instructモデルを用いてMILPコードを生成する(平均精度90%)。
実験により, 本フレームワークは, データプライバシと計算効率を確保しつつ, 航空機のスキン製造ケースにおける自動モデリングを実現することができた。
この研究は、複雑な工業シナリオにおけるモデリングのための、低障壁で信頼性の高い技術パスを提供する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA [6.571041942559539]
モンテカルロ (MC) シミュレーションは、科学と工学の分野で現実世界のシナリオを再現するために不可欠である。
堅牢性と汎用性にもかかわらず、FLUKAは自動化と外部の後処理ツールとの統合において大きな制限に直面している。
本研究では,これらの制約に対処するLarge Language Models(LLM)とAIエージェントの可能性について検討する。
本稿では、LangChain Python Frameworkを用いて開発され、FLUKAの典型的なMCシミュレーションを自動化するAIエージェントであるAutoFLUKAを紹介する。
論文 参考訳(メタデータ) (2024-10-19T21:50:11Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Control Industrial Automation System with Large Language Models [2.2369578015657954]
本稿では,大規模言語モデルと産業自動化システムを統合するためのフレームワークを提案する。
フレームワークの中核には、産業タスク用に設計されたエージェントシステム、構造化プロンプト方法、イベント駆動情報モデリング機構がある。
コントリビューションには、フォーマルなシステム設計、概念実証実装、タスク固有のデータセットを生成する方法が含まれる。
論文 参考訳(メタデータ) (2024-09-26T16:19:37Z) - Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
オープンでカスタマイズ可能な小型コード言語モデル(SLM)を強化するためにRAIT(Retrieval-Augmented Instruction-Tuning)を活用する新しい自律エージェントフレームワークを提案する。
命令チューニングされたコードSLMと外部ツールを使用してRACG(Retrieval-Augmented Code Generation)を組み合わせることで、エージェントは自然言語仕様からコードを生成し、デバッグし、最適化する。
我々のアプローチは、専門的なプロセスエンジニアリングタスクのための基礎的AIモデルの欠如の限界に対処し、説明可能性、知識編集、費用対効果の利点を提供する。
論文 参考訳(メタデータ) (2024-08-28T15:33:47Z) - Scaling Data-Driven Building Energy Modelling using Large Language Models [3.0309252269809264]
本稿では,ビル管理システムにおけるデータ駆動型モデルの開発に伴うスケーラビリティ問題に対処する手法を提案する。
我々は、大規模言語モデル(LLM)を使用して、BMSから構造化データを処理するコードを生成し、BMS固有の要求に対してデータ駆動モデルを構築します。
ケーススタディでは、プロンプトテンプレートの下での双方向のプロンプトは、高いコード生成率とコード精度を実現し、人件費を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-07-03T19:34:24Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
製造システムと自律ロボットの研究において、機械で解釈可能なシステム機能の仕様に「能力」という用語が用いられる。
セマンティック能力モデルから始めて、AI計画問題を自動的に生成するアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-14T10:37:34Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
論文 参考訳(メタデータ) (2020-10-30T19:37:48Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。