論文の概要: YOLO-LLTS: Real-Time Low-Light Traffic Sign Detection via Prior-Guided Enhancement and Multi-Branch Feature Interaction
- arxiv url: http://arxiv.org/abs/2503.13883v1
- Date: Tue, 18 Mar 2025 04:28:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:10.661361
- Title: YOLO-LLTS: Real-Time Low-Light Traffic Sign Detection via Prior-Guided Enhancement and Multi-Branch Feature Interaction
- Title(参考訳): YOLO-LLTS:プリエンハンスメントとマルチブランチ機能インタラクションによるリアルタイム低光信号検出
- Authors: Ziyu Lin, Yunfan Wu, Yuhang Ma, Junzhou Chen, Ronghui Zhang, Jiaming Wu, Guodong Yin, Liang Lin,
- Abstract要約: YOLO-LLTSは、低照度環境向けに設計されたエンドツーエンドのリアルタイム信号検出アルゴリズムである。
我々は、低照度シナリオにおける不特定小物体の特徴に対処するために、HRFM-TOD(High-Resolution Feature Map for Small Object Detection)モジュールを導入する。
次に,マルチブランチ・フィーチャーインタラクション・アテンション(MFIA)モジュールを開発した。
- 参考スコア(独自算出の注目度): 45.79993863157494
- License:
- Abstract: Detecting traffic signs effectively under low-light conditions remains a significant challenge. To address this issue, we propose YOLO-LLTS, an end-to-end real-time traffic sign detection algorithm specifically designed for low-light environments. Firstly, we introduce the High-Resolution Feature Map for Small Object Detection (HRFM-TOD) module to address indistinct small-object features in low-light scenarios. By leveraging high-resolution feature maps, HRFM-TOD effectively mitigates the feature dilution problem encountered in conventional PANet frameworks, thereby enhancing both detection accuracy and inference speed. Secondly, we develop the Multi-branch Feature Interaction Attention (MFIA) module, which facilitates deep feature interaction across multiple receptive fields in both channel and spatial dimensions, significantly improving the model's information extraction capabilities. Finally, we propose the Prior-Guided Enhancement Module (PGFE) to tackle common image quality challenges in low-light environments, such as noise, low contrast, and blurriness. This module employs prior knowledge to enrich image details and enhance visibility, substantially boosting detection performance. To support this research, we construct a novel dataset, the Chinese Nighttime Traffic Sign Sample Set (CNTSSS), covering diverse nighttime scenarios, including urban, highway, and rural environments under varying weather conditions. Experimental evaluations demonstrate that YOLO-LLTS achieves state-of-the-art performance, outperforming the previous best methods by 2.7% mAP50 and 1.6% mAP50:95 on TT100K-night, 1.3% mAP50 and 1.9% mAP50:95 on CNTSSS, and achieving superior results on the CCTSDB2021 dataset. Moreover, deployment experiments on edge devices confirm the real-time applicability and effectiveness of our proposed approach.
- Abstract(参考訳): 低照度条件下で交通標識を効果的に検出することは大きな課題である。
そこで本研究では,低照度環境に特化して設計された,エンドツーエンドのリアルタイム信号検出アルゴリズムであるYOLO-LLTSを提案する。
まず,小型物体検出のための高分解能特徴マップ(HRFM-TOD)を導入し,低照度シナリオにおける不特定小物体の特徴に対処する。
HRFM-TODは高解像度の特徴マップを活用することにより,従来のPANetフレームワークで発生する特徴希釈問題を効果的に軽減し,検出精度と推論速度の両立を図る。
次に,MFIA(Multi-branch Feature Interaction Attention, MFIA)モジュールを開発した。
最後に,低照度環境(ノイズ,低コントラスト,ぼかしなど)における画像品質の課題に対処するために,PGFE(Presideed-Guided Enhancement Module)を提案する。
このモジュールは、画像の詳細を強化し、可視性を高め、検出性能を大幅に向上させるために、事前の知識を使用している。
本研究を支援するため,中国における夜間交通標識サンプルセット (CNTSSS) を作成した。
実験により、YOLO-LLTSは最先端のパフォーマンスを達成し、TT100K-nightでは2.7% mAP50と1.6% mAP50:95、CNTSSSでは1.3% mAP50:95、CCTSDB2021データセットでは1.9% mAP50:95、より優れた結果を得た。
さらに,エッジデバイスへの展開実験により,提案手法のリアルタイム適用性と有効性を確認した。
関連論文リスト
- YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO [0.18641315013048293]
本稿では,画像超解像技術とマルチスケール観測を組み合わせた深層学習赤外線小目標検出手法を提案する。
この手法の2つの公開データセットであるSIRSTとIRISでのmAP@0.5検出率は、それぞれ96.4%と99.5%に達した。
論文 参考訳(メタデータ) (2024-12-27T18:43:56Z) - LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO [0.9062164411594178]
LAM-YOLOは、ドローンベースの画像に特化して設計されたオブジェクト検出モデルである。
我々は、異なる照明条件下での小さな目標の視認性を高めるために、光遮断注意機構を導入する。
次に、回帰損失関数として改良されたSIB-IoUを用いてモデル収束を加速し、局所化精度を向上させる。
論文 参考訳(メタデータ) (2024-11-01T10:00:48Z) - YOLO-TS: Real-Time Traffic Sign Detection with Enhanced Accuracy Using Optimized Receptive Fields and Anchor-Free Fusion [15.571409945909243]
本稿では,新しいリアルタイムかつ効率的な道路標識検出ネットワーク YOLO-TS を提案する。
このネットワークは,マルチスケール特徴写像の受容場を最適化することにより,性能を著しく向上させる。
我々の革新的な機能融合戦略は、アンカーフリー手法の柔軟性を活用し、精度と速度の両面で顕著な向上を実現している。
論文 参考訳(メタデータ) (2024-10-22T16:19:55Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
本稿では,アダプティブアテンションモジュール (AAM) と機能拡張モジュール (FEM) を利用して特徴マップ生成の過程での情報損失を低減する機能ピラミッドモデル AF-FPN を提案する。
YOLOv5の本来の特徴ピラミッドネットワークをAF-FPNに置き換え、YOLOv5ネットワークのマルチスケールターゲットの検出性能を向上させる。
論文 参考訳(メタデータ) (2021-12-16T11:02:12Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
本稿では,ビデオストリームからのアクションチューブ提案を1つのフォワードパスでスパース・トゥ・デンス方式で生成するフレームワークを提案する。
UCF101-24, JHMDB-21, UCFSportsベンチマークデータセット上で, 本モデルの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-30T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。