KANITE: Kolmogorov-Arnold Networks for ITE estimation
- URL: http://arxiv.org/abs/2503.13912v1
- Date: Tue, 18 Mar 2025 05:16:36 GMT
- Title: KANITE: Kolmogorov-Arnold Networks for ITE estimation
- Authors: Eshan Mehendale, Abhinav Thorat, Ravi Kolla, Niranjan Pedanekar,
- Abstract summary: We introduce KANITE, a framework leveraging Kolmogorov-Arnold Networks (KANs) for Individual Treatment Effect (ITE) estimation under multiple treatments setting in causal inference.
- Score: 3.087385668501741
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce KANITE, a framework leveraging Kolmogorov-Arnold Networks (KANs) for Individual Treatment Effect (ITE) estimation under multiple treatments setting in causal inference. By utilizing KAN's unique abilities to learn univariate activation functions as opposed to learning linear weights by Multi-Layer Perceptrons (MLPs), we improve the estimates of ITEs. The KANITE framework comprises two key architectures: 1.Integral Probability Metric (IPM) architecture: This employs an IPM loss in a specialized manner to effectively align towards ITE estimation across multiple treatments. 2. Entropy Balancing (EB) architecture: This uses weights for samples that are learned by optimizing entropy subject to balancing the covariates across treatment groups. Extensive evaluations on benchmark datasets demonstrate that KANITE outperforms state-of-the-art algorithms in both $\epsilon_{\text{PEHE}}$ and $\epsilon_{\text{ATE}}$ metrics. Our experiments highlight the advantages of KANITE in achieving improved causal estimates, emphasizing the potential of KANs to advance causal inference methodologies across diverse application areas.
Related papers
- A Meta-learner for Heterogeneous Effects in Difference-in-Differences [17.361857058902494]
We propose a doubly robust meta-learner for the estimation of the Conditional Average Treatment Effect on the Treated (CATT)<n>Our framework allows for the flexible estimation of the CATT, when conditioning on any subset of variables of interest using generic machine learning.
arXiv Detail & Related papers (2025-02-07T07:04:37Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov- Networks (KAN) are based on a fundamentally different mathematical framework.
KANs address several major issues insio, such as forgetting in continual learning scenarios.
We extend the investigation by evaluating the performance of KANs in continual learning tasks within computer vision.
arXiv Detail & Related papers (2024-09-20T14:49:21Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Preference-Based Multi-Agent Reinforcement Learning (PbMARL)<n>We identify the Nash equilibrium from a preference-only offline dataset in general-sum games.<n>Our findings underscore the multifaceted approach required for PbMARL.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Robust CATE Estimation Using Novel Ensemble Methods [0.8246494848934447]
estimation of Conditional Average Treatment Effects (CATE) is crucial for understanding the heterogeneity of treatment effects in clinical trials.
We evaluate the performance of common methods, including causal forests and various meta-learners, across a diverse set of scenarios.
We propose two new ensemble methods that integrate multiple estimators to enhance prediction stability and performance.
arXiv Detail & Related papers (2024-07-04T07:23:02Z) - Kolmogorov-Smirnov GAN [52.36633001046723]
We propose a novel deep generative model, the Kolmogorov-Smirnov Generative Adversarial Network (KSGAN)
Unlike existing approaches, KSGAN formulates the learning process as a minimization of the Kolmogorov-Smirnov (KS) distance.
arXiv Detail & Related papers (2024-06-28T14:30:14Z) - Estimation of individual causal effects in network setup for multiple
treatments [4.53340898566495]
We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and observational data.
We employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders.
Our approach utilizes separate neural networks to infer potential outcomes for each treatment.
arXiv Detail & Related papers (2023-12-18T06:07:45Z) - When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
Non-Convex Convergence Guarantee [51.527543027813344]
We propose systematic and efficient gradient-based methods for both one-way and two-way partial AUC (pAUC)
For both one-way and two-way pAUC, we propose two algorithms and prove their convergence for optimizing their two formulations, respectively.
arXiv Detail & Related papers (2022-03-01T01:59:53Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
We introduce an ensemble of deep learning models (EnsembleDLM) for robust DTI prediction.
EnsembleDLM only uses the sequence information of chemical compounds and proteins, and it aggregates the predictions from multiple deep neural networks.
It achieves state-of-the-art performance in Davis and KIBA datasets.
arXiv Detail & Related papers (2021-07-02T04:00:03Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - On Inductive Biases for Heterogeneous Treatment Effect Estimation [91.3755431537592]
We investigate how to exploit structural similarities of an individual's potential outcomes (POs) under different treatments.
We compare three end-to-end learning strategies to overcome this problem.
arXiv Detail & Related papers (2021-06-07T16:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.