ConSCompF: Consistency-focused Similarity Comparison Framework for Generative Large Language Models
- URL: http://arxiv.org/abs/2503.13923v1
- Date: Tue, 18 Mar 2025 05:38:04 GMT
- Title: ConSCompF: Consistency-focused Similarity Comparison Framework for Generative Large Language Models
- Authors: Alexey Karev, Dong Xu,
- Abstract summary: The consistency-focused Similarity Comparison Framework (ConSCompF) for generative large language models is proposed.<n>It compares texts generated by two LLMs and produces a similarity score, indicating the overall degree of similarity between their responses.
- Score: 19.479612569318412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have been one of the most important discoveries in machine learning in recent years. LLM-based artificial intelligence (AI) assistants, such as ChatGPT, have consistently attracted the attention from researchers, investors, and the general public, driving the rapid growth of this industry. With the frequent introduction of new LLMs to the market, it becomes increasingly difficult to differentiate between them, creating a demand for new LLM comparison methods. In this research, the Consistency-focused Similarity Comparison Framework (ConSCompF) for generative large language models is proposed. It compares texts generated by two LLMs and produces a similarity score, indicating the overall degree of similarity between their responses. The main advantage of this framework is that it can operate on a small number of unlabeled data, such as chatbot instruction prompts, and does not require LLM developers to disclose any information about their product. To evaluate the efficacy of ConSCompF, two experiments aimed at identifying similarities between multiple LLMs are conducted. Additionally, these experiments examine the correlation between the similarity scores generated by ConSCompF and the differences in the outputs produced by other benchmarking techniques, such as ROUGE-L. Finally, a series of few-shot LLM comparison experiments is conducted to evaluate the performance of ConSCompF in a few-shot LLM comparison scenario. The proposed framework can be used for calculating similarity matrices of multiple LLMs, which can be effectively visualized using principal component analysis (PCA). The ConSCompF output may provide useful insights into data that might have been used during LLM training and help detect possible investment fraud attempts.
Related papers
- A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis [43.746749403268275]
Large Language Models (LLMs) suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures.
We propose a collaborative framework, GRA, that aggregates specialized roles across small LLMs to generate high-quality, diverse, and reliable data.
Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents.
arXiv Detail & Related papers (2025-04-11T06:13:43Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.<n>In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification [34.9210323553677]
We introduce LAMPO, a novel paradigm that leverages Large Language Models (LLMs) for solving few-shot multi-class ordinal classification tasks.
Extensive experiments on seven public datasets demonstrate LAMPO's remarkably competitive performance across a diverse spectrum of applications.
arXiv Detail & Related papers (2024-08-06T15:55:05Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Towards Measuring Representational Similarity of Large Language Models [1.7228514699394508]
We measure the similarity of representations of a set of large language models with 7B parameters.
Our results suggest that some LLMs are substantially different from others.
We identify challenges of using representational similarity measures that suggest the need of careful study of similarity scores to avoid false conclusions.
arXiv Detail & Related papers (2023-12-05T12:48:04Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and
Generative Fusion [33.73671362609599]
Our framework consists of two modules: PairRanker and GenFuser.
PairRanker employs a specialized pairwise comparison method to distinguish subtle differences between candidate outputs.
GenFuser aims to merge the top-ranked candidates, generating an improved output.
arXiv Detail & Related papers (2023-06-05T03:32:26Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.