LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification
- URL: http://arxiv.org/abs/2408.03359v1
- Date: Tue, 6 Aug 2024 15:55:05 GMT
- Title: LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification
- Authors: Zhen Qin, Junru Wu, Jiaming Shen, Tianqi Liu, Xuanhui Wang,
- Abstract summary: We introduce LAMPO, a novel paradigm that leverages Large Language Models (LLMs) for solving few-shot multi-class ordinal classification tasks.
Extensive experiments on seven public datasets demonstrate LAMPO's remarkably competitive performance across a diverse spectrum of applications.
- Score: 34.9210323553677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LAMPO, a novel paradigm that leverages Large Language Models (LLMs) for solving few-shot multi-class ordinal classification tasks. Unlike conventional methods, which concatenate all demonstration examples with the test instance and prompt LLMs to produce the pointwise prediction, our framework uses the LLM as a preference machine that makes a relative comparative decision between the test instance and each demonstration. A self-supervised method is then introduced to aggregate these binary comparisons into the final ordinal decision. LAMPO addresses several limitations inherent in previous methods, including context length constraints, ordering biases, and challenges associated with absolute point-wise estimation. Extensive experiments on seven public datasets demonstrate LAMPO's remarkably competitive performance across a diverse spectrum of applications (e.g., movie review analysis and hate speech detection). Notably, in certain applications, the improvement can be substantial, exceeding 20% in an absolute term. Moreover, we believe LAMPO represents an interesting addition to the non-parametric application layered on top of LLMs, as it supports black-box LLMs without necessitating the outputting of LLM's internal states (e.g., embeddings), as seen in previous approaches.
Related papers
- Efficient Evaluation of Large Language Models via Collaborative Filtering [25.734508624520164]
Large Language Models (LLMs) have been proposed to measure and compare the capabilities of different LLMs.
evaluating LLMs is costly due to the large number of test instances and their slow inference speed.
We propose a two-stage method to efficiently estimate a model's real performance on a given benchmark.
arXiv Detail & Related papers (2025-04-05T07:46:30Z) - Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model [63.14883657299359]
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering.
tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert, where distribution shifts between pre-training and target datasets constrain target performance, and OpenWorld Stabilization, where catastrophic forgetting erases the model general knowledge.
arXiv Detail & Related papers (2025-03-06T15:29:13Z) - Harnessing Multiple Large Language Models: A Survey on LLM Ensemble [42.84156709748681]
This paper presents the first systematic review of recent developments in LLM Ensemble.
We introduce our taxonomy of LLM Ensemble and discuss several related research problems.
We also provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference''
arXiv Detail & Related papers (2025-02-25T09:48:53Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - SkillAggregation: Reference-free LLM-Dependent Aggregation [14.46141987797362]
Large Language Models (LLMs) are increasingly used to assess NLP tasks.
Recent work suggests using multiple LLMs as judges yields improved performance.
This work focuses on aggregating predictions from multiple systems where no reference labels are available.
arXiv Detail & Related papers (2024-10-14T07:13:47Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have gained increased popularity due to their remarkable success across various tasks.
However, individual LLMs have limitations when applied to complex tasks because of such factors as training biases, model sizes, and the datasets used.
We introduce SelectLLM, a novel algorithm that directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - Experimental Design for Active Transductive Inference in Large Language Models [18.2671641610825]
We use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD)
We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set.
We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen.
arXiv Detail & Related papers (2024-04-12T23:27:46Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBench is a benchmark for Fine-grained Constraints Following Benchmark for Large Language Models.
We introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level.
By evaluating 13 popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work.
arXiv Detail & Related papers (2023-10-31T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.