Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
- URL: http://arxiv.org/abs/2503.13987v1
- Date: Tue, 18 Mar 2025 07:44:09 GMT
- Title: Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
- Authors: Yaxiong Chen, Yujie Wang, Zixuan Zheng, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou,
- Abstract summary: Medical ultrasound imaging is ubiquitous, but manual analysis struggles to keep pace.<n>Semi-supervised learning leveraging both unlabeled and limited labeled data is a promising approach.<n>We present a simple yet effective pseudo-labeling method with an adversarially learned shape prior to regularize segmentations.
- Score: 40.08784389029472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical ultrasound imaging is ubiquitous, but manual analysis struggles to keep pace. Automated segmentation can help but requires large labeled datasets, which are scarce. Semi-supervised learning leveraging both unlabeled and limited labeled data is a promising approach. State-of-the-art methods use consistency regularization or pseudo-labeling but grow increasingly complex. Without sufficient labels, these models often latch onto artifacts or allow anatomically implausible segmentations. In this paper, we present a simple yet effective pseudo-labeling method with an adversarially learned shape prior to regularize segmentations. Specifically, we devise an encoder-twin-decoder network where the shape prior acts as an implicit shape model, penalizing anatomically implausible but not ground-truth-deviating predictions. Without bells and whistles, our simple approach achieves state-of-the-art performance on two benchmarks under different partition protocols. We provide a strong baseline for future semi-supervised medical image segmentation. Code is available at https://github.com/WUTCM-Lab/Shape-Prior-Semi-Seg.
Related papers
- Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
We present a novel semi-supervised learning method, Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation.
We use distinct decoders for student and teacher networks while maintain the same encoder.
To learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels.
arXiv Detail & Related papers (2023-08-31T09:13:34Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Compete to Win: Enhancing Pseudo Labels for Barely-supervised Medical
Image Segmentation [29.218542984289932]
We propose a novel Compete-to-Win method (ComWin) to enhance the pseudo label quality.
Experiments show that our method can achieve the best performance on three public medical image datasets.
arXiv Detail & Related papers (2023-04-15T10:04:14Z) - ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image
Segmentation [16.188681108101196]
We propose to utilize solely scribble annotations for weakly supervised segmentation.
Existing solutions mainly leverage selective losses computed solely on annotated areas.
We introduce regularization terms to encode the spatial relationship and shape prior.
We integrate the efficient scribble supervision with the prior into a unified framework, denoted as ZScribbleSeg.
arXiv Detail & Related papers (2023-01-12T09:00:40Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
arXiv Detail & Related papers (2021-09-13T23:36:36Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Superpixel-Guided Label Softening for Medical Image Segmentation [31.989873877526424]
We propose superpixel-based label softening for medical image segmentation.
We show that this method achieves overall superior segmentation performances to baseline and comparison methods for both 3D and 2D medical images.
arXiv Detail & Related papers (2020-07-17T10:55:59Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.