Rethinking Cell Counting Methods: Decoupling Counting and Localization
- URL: http://arxiv.org/abs/2503.13989v1
- Date: Tue, 18 Mar 2025 07:50:03 GMT
- Title: Rethinking Cell Counting Methods: Decoupling Counting and Localization
- Authors: Zixuan Zheng, Yilei Shi, Chunlei Li, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou,
- Abstract summary: We propose a conceptually simple yet effective decoupled learning scheme for automated cell counting.<n>In contrast to jointly learning counting and density map estimation, we show that decoupling these objectives surprisingly improves results.<n>Our key insight is that decoupled learning alleviates the need to learn counting on high-resolution density maps directly.
- Score: 20.458912966915843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cell counting in microscopy images is vital in medicine and biology but extremely tedious and time-consuming to perform manually. While automated methods have advanced in recent years, state-of-the-art approaches tend to increasingly complex model designs. In this paper, we propose a conceptually simple yet effective decoupled learning scheme for automated cell counting, consisting of separate counter and localizer networks. In contrast to jointly learning counting and density map estimation, we show that decoupling these objectives surprisingly improves results. The counter operates on intermediate feature maps rather than pixel space to leverage global context and produce count estimates, while also generating coarse density maps. The localizer then reconstructs high-resolution density maps that precisely localize individual cells, conditional on the original images and coarse density maps from the counter. Besides, to boost counting accuracy, we further introduce a global message passing module to integrate cross-region patterns. Extensive experiments on four datasets demonstrate that our approach, despite its simplicity, challenges common practice and achieves state-of-the-art performance by significant margins. Our key insight is that decoupled learning alleviates the need to learn counting on high-resolution density maps directly, allowing the model to focus on global features critical for accurate estimates. Code is available at https://github.com/MedAITech/DCL.
Related papers
- A Paradigm Shift in Mouza Map Vectorization: A Human-Machine Collaboration Approach [2.315458677488431]
Current manual digitization methods are time-consuming and labor-intensive.
Our study proposes a semi-automated approach to streamline the digitization process, saving both time and human resources.
arXiv Detail & Related papers (2024-10-21T12:47:36Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - Optimization Efficient Open-World Visual Region Recognition [55.76437190434433]
RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.
Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
arXiv Detail & Related papers (2023-11-02T16:31:49Z) - Keypoint-Augmented Self-Supervised Learning for Medical Image
Segmentation with Limited Annotation [21.203307064937142]
We present a keypointaugmented fusion layer that extracts representations preserving both short- and long-range self-attention.
In particular, we augment the CNN feature map at multiple scales by incorporating an additional input that learns long-range spatial selfattention.
Our method further outperforms existing SSL methods by producing more robust self-attention.
arXiv Detail & Related papers (2023-10-02T22:31:30Z) - Improved Counting and Localization from Density Maps for Object
Detection in 2D and 3D Microscopy Imaging [4.746727774540763]
We propose an alternative method to count and localize objects from the density map.
Our results show improved performance in counting and localization of objects in 2D and 3D microscopy data.
arXiv Detail & Related papers (2022-03-29T15:54:19Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Recurrent Distillation based Crowd Counting [23.4315417286694]
We propose a simple yet effective crowd counting framework that is able to achieve the state-of-the-art performance on various crowded scenes.
In experiments, we demonstrate that, with our simple convolutional neural network architecture strengthened by our proposed training algorithm, our model is able to outperform or be comparable with the state-of-the-art methods.
arXiv Detail & Related papers (2020-06-14T01:04:52Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z) - Adaptive Mixture Regression Network with Local Counting Map for Crowd
Counting [16.816382549827214]
We introduce a new target, named local counting map (LCM), to obtain more accurate results than density map based approaches.
We also propose an adaptive mixture regression framework with three modules in a coarse-to-fine manner to further improve the precision of the crowd estimation.
arXiv Detail & Related papers (2020-05-12T13:54:05Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.