論文の概要: Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
- arxiv url: http://arxiv.org/abs/2503.14013v1
- Date: Tue, 18 Mar 2025 08:20:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:39.222535
- Title: Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
- Title(参考訳): マスク画像の一貫性と不一致学習による半監督的医用画像セグメンテーションの促進
- Authors: Pengcheng Zhou, Lantian Zhang, Wei Li,
- Abstract要約: 3つの重要なモジュールを持つMasked Image Consistency and Discrepancy Learning(MICD)フレームワークを提案する。
Cross Feature Consistency (CFC)モジュールは、情報交換とモデルロバスト性を確立する。
Cross Model Discrepancy (CMD)モジュールは、EMAの教師ネットワークを利用して出力を監督し、分岐の多様性を維持する。
- 参考スコア(独自算出の注目度): 2.5355185243767986
- License:
- Abstract: Semi-supervised learning is of great significance in medical image segmentation by exploiting unlabeled data. Among its strategies, the co-training framework is prominent. However, previous co-training studies predominantly concentrate on network initialization variances and pseudo-label generation, while overlooking the equilibrium between information interchange and model diversity preservation. In this paper, we propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules. The Masked Cross Pseudo Consistency (MCPC) module enriches context perception and small sample learning via pseudo-labeling across masked-input branches. The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness by ensuring decoder feature consistency. The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity. Together, these modules address existing limitations by focusing on fine-grained local information and maintaining diversity in a heterogeneous framework. Experiments on two public medical image datasets, AMOS and Synapse, demonstrate that our approach outperforms state-of-the-art methods.
- Abstract(参考訳): 半教師付き学習は、ラベルのないデータを活用することにより、医用画像のセグメンテーションにおいて非常に重要である。
その戦略の中で、コトレーニングフレームワークは際立っている。
しかし、従来の共同学習研究は、情報交換とモデル多様性保存の均衡を見越しながら、ネットワーク初期化のばらつきと擬似ラベル生成に主に焦点をあてていた。
本稿では、3つの重要なモジュールを持つMasked Image Consistency and Disrepancy Learning(MICD)フレームワークを提案する。
Masked Cross Pseudo Consistency (MCPC)モジュールは、マスクインプットブランチ間の擬似ラベルによるコンテキスト認識と小さなサンプル学習を強化する。
Cross Feature Consistency (CFC)モジュールは、デコーダ機能の一貫性を確保することで、情報交換とモデルロバスト性を確立する。
Cross Model Discrepancy (CMD)モジュールは、EMAの教師ネットワークを利用して出力を監督し、分岐の多様性を維持する。
これらのモジュールは、局所的なきめ細かい情報に集中し、異種フレームワークにおける多様性を維持することによって、既存の制限に対処する。
AMOSとSynapseの2つの公開医療画像データセットの実験は、我々のアプローチが最先端の手法より優れていることを示した。
関連論文リスト
- Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
本稿では,RS画像セマンティックセグメンテーションタスクのための,新しい半教師付きマルチスケール不確かさとクロスTeacher-Student Attention(MUCA)モデルを提案する。
MUCAは、マルチスケールの不確実性整合正則化を導入することにより、ネットワークの異なる層における特徴写像間の整合性を制限する。
MUCAは学生ネットワークの誘導にクロス教師・学生の注意機構を使用し、学生ネットワークにより差別的な特徴表現を構築するよう誘導する。
論文 参考訳(メタデータ) (2025-01-18T11:57:20Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Exemplar-based Medical Image(CMEMS)のためのクロスモデル相互学習フレームワーク
外来医用画像のためのクロスモデル相互学習フレームワーク(CMEMS)について紹介する。
論文 参考訳(メタデータ) (2024-04-18T00:18:07Z) - Semi-supervised Medical Image Segmentation Method Based on Cross-pseudo
Labeling Leveraging Strong and Weak Data Augmentation Strategies [2.8246591681333024]
本稿では,Fixmatch の概念を革新的に取り入れた半教師付きモデル DFCPS を提案する。
整合性学習と自己学習を統合したクロス擬似スーパービジョンが導入された。
我々のモデルは、ラベルなしデータの比率が異なる4つの区分全てにおいて、常に優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-17T13:07:44Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
Inception Large Kernel Attention (I-LKA) モジュールをベースとしたロバストなフレームワークを統合した新しい自己教師型アルゴリズム textbfS$3$-Net を提案する。
我々は、変形可能な畳み込みを積分成分として利用し、優れた物体境界定義のための歪み変形を効果的に捕捉し、デライン化する。
皮膚病変および肺臓器の分節タスクに関する実験結果から,SOTA法と比較して,本手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-08-31T21:28:46Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
CLIPのようなマルチモーダルなコントラスト学習フレームワークは通常、トレーニングに大量の画像テキストサンプルを必要とする。
本稿では,ストリーミングデータを用いた連続CLIPトレーニングの実現可能性について論じる。
論文 参考訳(メタデータ) (2023-05-11T08:04:46Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
マルチレベルセマンティック・ガイド・コントラスト・ドメイン・アダプティブ・フレームワークを提案する。
我々のアプローチは、ドメイン間の特徴表現を整合させるために、対照的な学習を伴う自己学習を取り入れている。
特に,ピクセル・ツー・ピクセル,ピクセル・ツー・セントロイド,セントロイド・ツー・セントロイドのコントラストを取り入れることで,コントラストの損失を増大させる。
論文 参考訳(メタデータ) (2023-01-04T19:16:55Z) - CLIP-Driven Fine-grained Text-Image Person Re-identification [50.94827165464813]
TIReIDは、候補画像のプールから与えられたテキストクエリに対応する画像を取得することを目的としている。
TIReIDにおけるCLIPの強力な知識をフル活用するための,CLIP駆動のきめ細かい情報抽出フレームワーク(CFine)を提案する。
論文 参考訳(メタデータ) (2022-10-19T03:43:12Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。