論文の概要: Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers
- arxiv url: http://arxiv.org/abs/2503.14088v1
- Date: Tue, 18 Mar 2025 10:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 16:29:12.665299
- Title: Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers
- Title(参考訳): モジュール量子コンピュータによる大規模分散量子長短期メモリの実現に向けて
- Authors: Kuan-Cheng Chen, Samuel Yen-Chi Chen, Chen-Yu Liu, Kin K. Leung,
- Abstract要約: 我々は、ノイズ中間スケール量子(NISQ)デバイス上でのスケーラビリティ問題に対処するために、分散量子長短期メモリ(QLSTM)フレームワークを導入する。
QLSTMは長期の時間的依存関係をキャプチャし、分散アーキテクチャは基礎となる変分量子回路をより小さく管理可能なサブ回路に分割する。
分散QLSTMは,古典的アプローチと比較して,安定した収束とトレーニングダイナミクスの向上を実現している。
- 参考スコア(独自算出の注目度): 5.673361333697935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a Distributed Quantum Long Short-Term Memory (QLSTM) framework that leverages modular quantum computing to address scalability challenges on Noisy Intermediate-Scale Quantum (NISQ) devices. By embedding variational quantum circuits into LSTM cells, the QLSTM captures long-range temporal dependencies, while a distributed architecture partitions the underlying Variational Quantum Circuits (VQCs) into smaller, manageable subcircuits that can be executed on a network of quantum processing units. We assess the proposed framework using nontrivial benchmark problems such as damped harmonic oscillators and Nonlinear Autoregressive Moving Average sequences. Our results demonstrate that the distributed QLSTM achieves stable convergence and improved training dynamics compared to classical approaches. This work underscores the potential of modular, distributed quantum computing architectures for large-scale sequence modelling, providing a foundation for the future integration of hybrid quantum-classical solutions into advanced Quantum High-performance computing (HPC) ecosystems.
- Abstract(参考訳): 本研究では,モジュール型量子コンピューティングを利用した分散量子長短期メモリ(QLSTM)フレームワークを導入し,NISQデバイス上でのスケーラビリティ問題に対処する。
変分量子回路をLSTMセルに埋め込むことにより、QLSTMは長期の時間的依存関係を捕捉し、分散アーキテクチャは、基礎となる変分量子回路(VQC)を、量子処理ユニットのネットワーク上で実行できる小さく管理可能なサブ回路に分割する。
減衰調和振動子や非線形自己回帰移動平均列などの非自明なベンチマーク問題を用いて,提案手法の評価を行った。
この結果から,分散QLSTMは古典的アプローチに比べて安定した収束とトレーニングダイナミクスの向上を実現していることがわかった。
この研究は、大規模シーケンスモデリングのためのモジュール化された分散量子コンピューティングアーキテクチャの可能性を強調し、ハイブリッド量子古典的ソリューションを先進量子ハイパフォーマンスコンピューティング(HPC)エコシステムに統合するための基盤を提供する。
関連論文リスト
- Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
本稿では,量子アテンション機構を備えた古典的トランスフォーマーモデルを強化するハイブリッドアーキテクチャであるQuantum Adaptive Self-Attention (QASA)を提案する。
QASAはドット積の注意をパラメータ化量子回路(PQC)に置き換え、量子ヒルベルト空間におけるトークン間の関係を適応的に捉える。
合成時系列タスクの実験により、QASAは標準変圧器と古典的変圧器の双方と比較して、より高速な収束と優れた一般化を実現することが示された。
論文 参考訳(メタデータ) (2025-04-05T02:52:37Z) - HQCC: A Hybrid Quantum-Classical Classifier with Adaptive Structure [7.836610894905161]
量子機械学習(QML)を進化させるハイブリッド量子古典(HQCC)を提案する。
HQCCはLong ShortTerm Memory (LSTM)駆動の動的回路生成器を通じて量子回路(PQC)を適応的に最適化する。
我々はMNISTとFashion MNISTのデータセットでシミュレーションを行い、97.12%の精度を達成した。
論文 参考訳(メタデータ) (2025-04-02T22:49:00Z) - Training Hybrid Deep Quantum Neural Network for Reinforced Learning Efficiently [2.7812018782449073]
我々は、効率的なバックプロパゲーションによって課題を克服するスケーラブルな量子機械学習アーキテクチャを提案する。
提案手法は,hDQNNが純粋に古典的なモデルと比較して,潜在的な一般化可能性を示すことを強調している。
論文 参考訳(メタデータ) (2025-03-12T07:12:02Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
可変量子回路(VQC)の効率的かつスケーラブルなプログラミングを容易にするQT-QFWP(Quantum-Train Quantum Fast Weight Programmer)フレームワークを提案する。
このアプローチは、量子と古典の両方のパラメータ管理を最適化することで、従来のハイブリッド量子古典モデルに対して大きな優位性をもたらす。
QT-QFWPは、関連モデルを効率性と予測精度の両方で上回り、より実用的で費用対効果の高い量子機械学習アプリケーションへの道筋を提供する。
論文 参考訳(メタデータ) (2024-12-02T06:26:09Z) - Quantum Kernel-Based Long Short-term Memory [0.30723404270319693]
本稿では,Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) ネットワークを導入する。
この量子化アーキテクチャは、効率的な収束、ロバストな損失最小化、モデルコンパクト性を示す。
ベンチマークの結果,QK-LSTMは従来のLSTMモデルと同等の性能を示すが,パラメータは少ない。
論文 参考訳(メタデータ) (2024-11-20T11:39:30Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
我々は、絡み合ったスリム化可能な量子ニューラルネットワーク(eSQNN)の深さ制御可能なアーキテクチャを開発する。
本稿では,eS-QNNの重畳符号化パラメータを通信する絡み合ったスリム化QFL(eSQFL)を提案する。
画像分類タスクでは、広範囲なシミュレーションがeSQFLの有効性を裏付ける。
論文 参考訳(メタデータ) (2022-12-04T03:18:03Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。