論文の概要: HQCC: A Hybrid Quantum-Classical Classifier with Adaptive Structure
- arxiv url: http://arxiv.org/abs/2504.02167v1
- Date: Wed, 02 Apr 2025 22:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 21:56:47.132827
- Title: HQCC: A Hybrid Quantum-Classical Classifier with Adaptive Structure
- Title(参考訳): HQCC:適応構造を持つハイブリッド量子古典分類器
- Authors: Ren-Xin Zhao, Xinze Tong, Shi Wang,
- Abstract要約: 量子機械学習(QML)を進化させるハイブリッド量子古典(HQCC)を提案する。
HQCCはLong ShortTerm Memory (LSTM)駆動の動的回路生成器を通じて量子回路(PQC)を適応的に最適化する。
我々はMNISTとFashion MNISTのデータセットでシミュレーションを行い、97.12%の精度を達成した。
- 参考スコア(独自算出の注目度): 7.836610894905161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized Quantum Circuits (PQCs) with fixed structures severely degrade the performance of Quantum Machine Learning (QML). To address this, a Hybrid Quantum-Classical Classifier (HQCC) is proposed. It opens a practical way to advance QML in the Noisy Intermediate-Scale Quantum (NISQ) era by adaptively optimizing the PQC through a Long Short-Term Memory (LSTM) driven dynamic circuit generator, utilizing a local quantum filter for scalable feature extraction, and exploiting architectural plasticity to balance the entanglement depth and noise robustness. We realize the HQCC on the TensorCircuit platform and run simulations on the MNIST and Fashion MNIST datasets, achieving up to 97.12\% accuracy on MNIST and outperforming several alternative methods.
- Abstract(参考訳): 固定構造を有するパラメータ化量子回路(PQC)は量子機械学習(QML)の性能を著しく低下させる。
これを解決するために、Hybrid Quantum-Classical Classifier (HQCC) を提案する。
長短期メモリ(LSTM)駆動の動的回路ジェネレータを用いてPQCを適応的に最適化し、拡張性のある特徴抽出に局所量子フィルタを利用し、絡み合い深さとノイズ堅牢性のバランスをとることで、NISQ時代にQMLを前進させる実践的な方法を開く。
我々は、TensorCircuitプラットフォーム上のHQCCを実現し、MNISTおよびFashion MNISTデータセット上でシミュレーションを実行し、最大97.12\%の精度でMNISTを達成し、いくつかの代替手法より優れている。
関連論文リスト
- Toward Practical Quantum Machine Learning: A Novel Hybrid Quantum LSTM for Fraud Detection [0.1398098625978622]
本稿では,不正検出のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
重畳や絡み合いなどの量子現象を活用することで、我々のモデルはシーケンシャルトランザクションデータの特徴表現を強化する。
その結果,従来のLSTMベースラインと比較して,精度,精度,リコール,F1スコアの競争力の向上が示された。
論文 参考訳(メタデータ) (2025-04-30T19:09:12Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
本稿では,量子アテンション機構を備えた古典的トランスフォーマーモデルを強化するハイブリッドアーキテクチャであるQuantum Adaptive Self-Attention (QASA)を提案する。
QASAはドット積の注意をパラメータ化量子回路(PQC)に置き換え、量子ヒルベルト空間におけるトークン間の関係を適応的に捉える。
合成時系列タスクの実験により、QASAは標準変圧器と古典的変圧器の双方と比較して、より高速な収束と優れた一般化を実現することが示された。
論文 参考訳(メタデータ) (2025-04-05T02:52:37Z) - Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers [5.673361333697935]
我々は、ノイズ中間スケール量子(NISQ)デバイス上でのスケーラビリティ問題に対処するために、分散量子長短期メモリ(QLSTM)フレームワークを導入する。
QLSTMは長期の時間的依存関係をキャプチャし、分散アーキテクチャは基礎となる変分量子回路をより小さく管理可能なサブ回路に分割する。
分散QLSTMは,古典的アプローチと比較して,安定した収束とトレーニングダイナミクスの向上を実現している。
論文 参考訳(メタデータ) (2025-03-18T10:07:34Z) - Quantum autoencoders for image classification [0.0]
量子オートエンコーダ(QAE)は、パラメータチューニングのみに古典的な最適化を利用する。
QAEはより少ないパラメータで効率的な分類モデルとして機能し、完全なエンドツーエンド学習に量子回路を利用する可能性を強調することができる。
論文 参考訳(メタデータ) (2025-02-21T07:13:38Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
可変量子回路(VQC)の効率的かつスケーラブルなプログラミングを容易にするQT-QFWP(Quantum-Train Quantum Fast Weight Programmer)フレームワークを提案する。
このアプローチは、量子と古典の両方のパラメータ管理を最適化することで、従来のハイブリッド量子古典モデルに対して大きな優位性をもたらす。
QT-QFWPは、関連モデルを効率性と予測精度の両方で上回り、より実用的で費用対効果の高い量子機械学習アプリケーションへの道筋を提供する。
論文 参考訳(メタデータ) (2024-12-02T06:26:09Z) - A Quantum Circuit-Based Compression Perspective for Parameter-Efficient Learning [19.178352290785153]
量子パラメータ生成の枠組みに量子s適応(QPA)を導入する。
QPAはQNNと古典的な多層パーセプトロンマッピングモデルを統合し、微調整のためのパラメータを生成する。
Gemma-2とGPT-2をケーススタディとして、QPAはパラメータ効率のよい微調整法に対して重要なパラメータ還元を示す。
論文 参考訳(メタデータ) (2024-10-13T14:09:29Z) - Quantum Adjoint Convolutional Layers for Effective Data Representation [21.755109562063282]
本稿では、効率的かつ解釈可能な量子畳み込みネットワークの開発の基礎を定めている。
また、量子マシンビジョンの分野でも進歩している。
論文 参考訳(メタデータ) (2024-04-26T12:52:45Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
我々は、絡み合ったスリム化可能な量子ニューラルネットワーク(eSQNN)の深さ制御可能なアーキテクチャを開発する。
本稿では,eS-QNNの重畳符号化パラメータを通信する絡み合ったスリム化QFL(eSQFL)を提案する。
画像分類タスクでは、広範囲なシミュレーションがeSQFLの有効性を裏付ける。
論文 参考訳(メタデータ) (2022-12-04T03:18:03Z) - Evolutionary-based quantum architecture search [0.0]
本稿では,高い表現力と訓練能力のバランスをとるために,進化型量子アーキテクチャ探索(EQAS)手法を提案する。
その結果,提案したEQASはパラメータ化の少ない最適なQCAを探索でき,より高い精度は3つのデータセットの分類タスクにEQASを適用して得られることがわかった。
論文 参考訳(メタデータ) (2022-12-01T10:51:58Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits [26.130594925642143]
ノイズノイズは、NISQ(Noisy Intermediate-Scale Quantum)コンピュータにおける鍵となる課題である。
可変回路と量子ビットマッピングのノイズ適応型共同研究のための,最初の包括的なフレームワークであるQuantumNASを提案し,実験的に実装した。
QMLタスクでは、QuantumNASは95%以上の2クラス、85%の4クラス、実際の量子コンピュータ上での10クラスの分類精度を初めて証明した。
論文 参考訳(メタデータ) (2021-07-22T17:58:13Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。