Lightweight Gradient-Aware Upscaling of 3D Gaussian Splatting Images
- URL: http://arxiv.org/abs/2503.14171v1
- Date: Tue, 18 Mar 2025 11:42:52 GMT
- Title: Lightweight Gradient-Aware Upscaling of 3D Gaussian Splatting Images
- Authors: Simon Niedermayr, Christoph Neuhauser RĂ¼diger Westermann,
- Abstract summary: Compared to 3DGS, it achieves significantly higher rendering speeds and reduces artifacts commonly observed in 3DGS reconstructions.<n>Our technique upscales low-resolution 3DGS renderings with a marginal increase in cost.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce an image upscaling technique tailored for 3D Gaussian Splatting (3DGS) on lightweight GPUs. Compared to 3DGS, it achieves significantly higher rendering speeds and reduces artifacts commonly observed in 3DGS reconstructions. Our technique upscales low-resolution 3DGS renderings with a marginal increase in cost by directly leveraging the analytical image gradients of Gaussians for gradient-based bicubic spline interpolation. The technique is agnostic to the specific 3DGS implementation, achieving novel view synthesis at rates 3x-4x higher than the baseline implementation. Through extensive experiments on multiple datasets, we showcase the performance improvements and high reconstruction fidelity attainable with gradient-aware upscaling of 3DGS images. We further demonstrate the integration of gradient-aware upscaling into the gradient-based optimization of a 3DGS model and analyze its effects on reconstruction quality and performance.
Related papers
- 3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering [50.04967868036964]
3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis.<n>We propose 3D Gabor Splatting (3DGabSplat) that incorporates a novel 3D Gabor-based primitive with multiple directional 3D frequency responses.<n>We achieve 1.35 dBR gain over 3D with simultaneously reduced number of primitive memory consumption.
arXiv Detail & Related papers (2025-08-07T12:49:44Z) - StructGS: Adaptive Spherical Harmonics and Rendering Enhancements for Superior 3D Gaussian Splatting [5.759434800012218]
StructGS is a framework that enhances 3D Gaussian Splatting (3DGS) for improved novel-view synthesis in 3D reconstruction.<n>Our framework significantly reduces computational redundancy, enhances detail capture and supports high-resolution rendering from low-resolution inputs.
arXiv Detail & Related papers (2025-03-09T05:39:44Z) - Does 3D Gaussian Splatting Need Accurate Volumetric Rendering? [8.421214057144569]
3D Gaussian Splatting (3DGS) is an important reference method for learning 3D representations of a captured scene.<n>NeRFs, which preceded 3DGS, are based on a principled ray-marching approach for rendering.<n>We present an in-depth analysis of the various approximations and assumptions used by the original 3DGS solution.
arXiv Detail & Related papers (2025-02-26T17:11:26Z) - Volumetrically Consistent 3D Gaussian Rasterization [18.84882580327324]
We show that splatting and its approximations are unnecessary, even within a viewizer.
We use this analytic transmittance framework to derive more physically-accurate alpha values than 3DGS.
Our method represents opaque surfaces with higher accuracy and fewer points than 3DGS.
arXiv Detail & Related papers (2024-12-04T15:05:43Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.