Consumer-grade EEG-based Eye Tracking
- URL: http://arxiv.org/abs/2503.14322v1
- Date: Tue, 18 Mar 2025 14:53:20 GMT
- Title: Consumer-grade EEG-based Eye Tracking
- Authors: Tiago Vasconcelos Afonso, Florian Heinrichs,
- Abstract summary: Electroencephalography-based eye tracking (EEG-ET) leverages eye movement artifacts in EEG signals as an alternative to camera-based tracking.<n>EEG-ET offers advantages such as robustness in low-light conditions and better integration with brain-computer interfaces.<n>We present a dataset comprising simultaneous EEG and eye-tracking recordings from 113 participants across 116 sessions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography-based eye tracking (EEG-ET) leverages eye movement artifacts in EEG signals as an alternative to camera-based tracking. While EEG-ET offers advantages such as robustness in low-light conditions and better integration with brain-computer interfaces, its development lags behind traditional methods, particularly in consumer-grade settings. To support research in this area, we present a dataset comprising simultaneous EEG and eye-tracking recordings from 113 participants across 116 sessions, amounting to 11 hours and 45 minutes of recordings. Data was collected using a consumer-grade EEG headset and webcam-based eye tracking, capturing eye movements under four experimental paradigms with varying complexity. The dataset enables the evaluation of EEG-ET methods across different gaze conditions and serves as a benchmark for assessing feasibility with affordable hardware. Data preprocessing includes handling of missing values and filtering to enhance usability. In addition to the dataset, code for data preprocessing and analysis is available to support reproducibility and further research.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.<n>Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.<n>The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
This paper introduces a MUltimodal Similarity-keeping contrastivE learning framework for zero-shot EEG-based image classification.
We develop a series of multivariate time-series encoders tailored for EEG signals and assess the efficacy of regularized contrastive EEG-Image pretraining.
Our method achieves state-of-the-art performance, with a top-1 accuracy of 19.3% and a top-5 accuracy of 48.8% in 200-way zero-shot image classification.
arXiv Detail & Related papers (2024-06-05T16:42:23Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Decoding Natural Images from EEG for Object Recognition [8.411976038504589]
This paper presents a self-supervised framework to demonstrate the feasibility of learning image representations from EEG signals.
We achieve a top-1 accuracy of 15.6% and a top-5 accuracy of 42.8% in challenging 200-way zero-shot tasks.
These findings yield valuable insights for neural decoding and brain-computer interfaces in real-world scenarios.
arXiv Detail & Related papers (2023-08-25T08:05:37Z) - An Interpretable and Attention-based Method for Gaze Estimation Using
Electroencephalography [8.09848629098117]
We leverage a large data set of simultaneously measured Electroencephalography (EEG) and Eye tracking, proposing an interpretable model for gaze estimation from EEG data.
We present a novel attention-based deep learning framework for EEG signal analysis, which allows the network to focus on the most relevant information in the signal and discard problematic channels.
arXiv Detail & Related papers (2023-08-09T16:58:01Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - EEGEyeNet: a Simultaneous Electroencephalography and Eye-tracking
Dataset and Benchmark for Eye Movement Prediction [5.10183147987411]
We present a new dataset with the goal of advancing research in the intersection of brain activities and eye movements.
EEGEyeNet consists of simultaneous Electroencephalography (EEG) and Eye-tracking (ET) recordings from 356 different subjects.
We also propose a benchmark to evaluate gaze prediction from EEG measurements.
arXiv Detail & Related papers (2021-11-06T15:41:27Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.