論文の概要: MANTRA: Enhancing Automated Method-Level Refactoring with Contextual RAG and Multi-Agent LLM Collaboration
- arxiv url: http://arxiv.org/abs/2503.14340v2
- Date: Thu, 27 Mar 2025 01:43:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:49:56.237635
- Title: MANTRA: Enhancing Automated Method-Level Refactoring with Contextual RAG and Multi-Agent LLM Collaboration
- Title(参考訳): MANTRA: コンテキストRAGとマルチエージェントLLMコラボレーションによる自動メソッドレベルリファクタリングの実現
- Authors: Yisen Xu, Feng Lin, Jinqiu Yang, Tse-Hsun, Chen, Nikolaos Tsantalis,
- Abstract要約: 本稿では,包括的Large Language ModelsエージェントベースのフレームワークであるMANTRAを紹介する。
ManTRAは、コンテキスト対応検索強化生成、協調型マルチエージェントコラボレーション、および言語強化学習を統合している。
MANTRA はベースライン LLM モデルを大幅に上回ることを示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 44.75848695076576
- License:
- Abstract: Maintaining and scaling software systems relies heavily on effective code refactoring, yet this process remains labor-intensive, requiring developers to carefully analyze existing codebases and prevent the introduction of new defects. Although recent advancements have leveraged Large Language Models (LLMs) to automate refactoring tasks, current solutions are constrained in scope and lack mechanisms to guarantee code compilability and successful test execution. In this work, we introduce MANTRA, a comprehensive LLM agent-based framework that automates method-level refactoring. MANTRA integrates Context-Aware Retrieval-Augmented Generation, coordinated Multi-Agent Collaboration, and Verbal Reinforcement Learning to emulate human decision-making during refactoring while preserving code correctness and readability. Our empirical study, conducted on 703 instances of "pure refactorings" (i.e., code changes exclusively involving structural improvements), drawn from 10 representative Java projects, covers the six most prevalent refactoring operations. Experimental results demonstrate that MANTRA substantially surpasses a baseline LLM model (RawGPT ), achieving an 82.8% success rate (582/703) in producing code that compiles and passes all tests, compared to just 8.7% (61/703) with RawGPT. Moreover, in comparison to IntelliJ's LLM-powered refactoring tool (EM-Assist), MANTRA exhibits a 50% improvement in generating Extract Method transformations. A usability study involving 37 professional developers further shows that refactorings performed by MANTRA are perceived to be as readable and reusable as human-written code, and in certain cases, even more favorable. These results highlight the practical advantages of MANTRA and emphasize the growing potential of LLM-based systems in advancing the automation of software refactoring tasks.
- Abstract(参考訳): ソフトウェアシステムの保守とスケーリングは効果的なコードリファクタリングに大きく依存するが、このプロセスは依然として労働集約的であり、開発者は既存のコードベースを慎重に分析し、新しい欠陥の導入を防ぐ必要がある。
最近の進歩はリファクタリングタスクを自動化するためにLarge Language Models (LLMs)を活用しているが、現在のソリューションはスコープに制約があり、コードのコンパイル可能性とテスト実行を成功させるメカニズムが欠如している。
本稿では,メソッドレベルのリファクタリングを自動化する総合的なLLMエージェントベースのフレームワークであるMANTRAを紹介する。
MANTRAは、コード正しさと可読性を保ちながら、リファクタリング中の人間の意思決定をエミュレートする、コンテキスト対応検索強化生成、コーディネートされたマルチエージェントコラボレーション、および言語強化学習を統合している。
10の代表的なJavaプロジェクトから引き出された703の“純粋なリファクタリング”(すなわち、構造的な改善を含むコードの変更)で実施された実証的研究は、最も一般的な6つのリファクタリング操作をカバーしています。
実験の結果、MANTRA はベースライン LLM モデル (RawGPT ) を大幅に上回り、RawGPT の8.7% (61/703) に対して、全テストのコンパイルとパスを行うコードの生成において82.8% の成功率 (582/703) を達成した。
さらに、IntelliJのLLMベースのリファクタリングツール(EM-Assist)と比較して、MANTRAはExtract Method変換の生成において50%改善されている。
37人のプロの開発者によるユーザビリティ調査では、MANTRAによって実行されるリファクタリングは、人間が書いたコードと同じくらい可読で再利用可能であると認識され、場合によってはさらに好都合であることが示されている。
これらの結果は、MANTRAの実用上の利点を強調し、ソフトウェアリファクタリングタスクの自動化を進める上で、LLMベースのシステムが成長する可能性を強調している。
関連論文リスト
- Automated Refactoring of Non-Idiomatic Python Code: A Differentiated Replication with LLMs [54.309127753635366]
本研究は, GPT-4の有効性について検討し, 慣用行動の推奨と示唆について検討した。
この結果から,従来は複雑なコード解析に基づくレコメンデータの実装が求められていた,LCMの課題達成の可能性が浮き彫りになった。
論文 参考訳(メタデータ) (2025-01-28T15:41:54Z) - Generating refactored code accurately using reinforcement learning [3.179831861897336]
そこで本研究では,Javaソースコードの自動抽出を行うために,プログラム言語モデルを微調整・整合化するための強化学習に基づく新しい手法を提案する。
提案手法は,PPO(Proximal Policy Optimization)アルゴリズムを用いて,シーケンス・ツー・シーケンス生成モデルを微調整する。
我々の実験は、我々のアプローチがコードにおける大きな言語モデルの性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2024-12-23T23:09:48Z) - An Empirical Study on the Potential of LLMs in Automated Software Refactoring [9.157968996300417]
自動ソフトウェアにおける大規模言語モデル(LLM)の可能性について検討する。
私たちは、ChatGPTが提案した176のソリューションのうち13と、Geminiが提案した137のソリューションのうち9が、ソースコードの機能を変更したり、構文エラーを導入したりすることを安全でないことに気付きました。
論文 参考訳(メタデータ) (2024-11-07T05:35:55Z) - An Empirical Study on the Code Refactoring Capability of Large Language Models [0.5852077003870416]
この研究は、30のオープンソースプロジェクトにわたるコードにおいて、コード生成に最適化されたLLMであるStarCoder2を実証的に評価する。
我々は,(1)コード品質の改善,(2)臭いの型と有効性,(3)ワンショットとチェーン・オブ・シークレットのプロンプトによる改善に焦点を当て,StarCoder2のパフォーマンスを人間開発者と比較した。
論文 参考訳(メタデータ) (2024-11-04T17:46:20Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Automated Unit Test Refactoring [10.847400457238423]
テストの臭いは、設計プラクティスの貧弱さとドメイン知識の不足から生じます。
我々は,Javaプロジェクトにおける自動テストのための文脈拡張型LLMベースのフレームワークUTRefactorを提案する。
6つのオープンソースのJavaプロジェクトから879のテストに対してUTRefactorを評価し、テストの匂いを2,375から265に減らし、89%の削減を実現した。
論文 参考訳(メタデータ) (2024-09-25T08:42:29Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGenは、複数のLarge Language Model (LLM)エージェントに基づいたソフトウェアプロセスモデルをエミュレートするコード生成フレームワークである。
FlowGenScrumをHumanEval、HumanEval-ET、MBPP、MBPP-ETの4つのベンチマークで評価した。
論文 参考訳(メタデータ) (2024-03-23T14:04:48Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Do code refactorings influence the merge effort? [80.1936417993664]
複数のコントリビュータがソースコードを並行して変更して,新機能の実装やバグの修正,既存のコードの変更などを行っている。
これらの同時変更は、ソースコードの同じバージョンにマージする必要がある。
研究によると、すべてのマージの試みの10~20%が衝突を起こしており、これはプロセスを完了するために手動開発者の介入を必要とする。
論文 参考訳(メタデータ) (2023-05-10T13:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。