From "Hallucination" to "Suture": Insights from Language Philosophy to Enhance Large Language Models
- URL: http://arxiv.org/abs/2503.14392v1
- Date: Tue, 18 Mar 2025 16:27:01 GMT
- Title: From "Hallucination" to "Suture": Insights from Language Philosophy to Enhance Large Language Models
- Authors: Qiantong Wang,
- Abstract summary: This paper explores hallucination phenomena in large language models (LLMs) through the lens of language philosophy and psychoanalysis.<n>By incorporating Lacan's concepts of the "chain of signifiers" and "suture points," we propose the Anchor-RAG framework as a novel approach to mitigate hallucinations.
- Score: 1.03341388090561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores hallucination phenomena in large language models (LLMs) through the lens of language philosophy and psychoanalysis. By incorporating Lacan's concepts of the "chain of signifiers" and "suture points," we propose the Anchor-RAG framework as a novel approach to mitigate hallucinations. In contrast to the predominant reliance on trial-and-error experiments, constant adjustments of mathematical formulas, or resource-intensive methods that emphasize quantity over quality, our approach returns to the fundamental principles of linguistics to analyze the root causes of hallucinations in LLMs. Drawing from robust theoretical foundations, we derive algorithms and models that are not only effective in reducing hallucinations but also enhance LLM performance and improve output quality. This paper seeks to establish a comprehensive theoretical framework for understanding hallucinations in LLMs and aims to challenge the prevalent "guess-and-test" approach and rat race mentality in the field. We aspire to pave the way for a new era of interpretable LLMs, offering deeper insights into the inner workings of language-based AI systems.
Related papers
- Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models [0.0]
Hallucinations in large language models (LLMs) present a growing challenge across real-world applications.
We propose a prompt-based framework to systematically trigger and quantify hallucination.
arXiv Detail & Related papers (2025-05-01T14:33:47Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.
This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.
Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
arXiv Detail & Related papers (2024-10-25T08:34:53Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP)
LLMs are prone to hallucination, generating plausible yet nonfactual content.
This phenomenon raises significant concerns over the reliability of LLMs in real-world information retrieval systems.
arXiv Detail & Related papers (2023-11-09T09:25:37Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
"Hallucination" refers to instances where large language models (LLMs) generate factually inaccurate or ungrounded information.
We introduce a novel pre-language self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction.
We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-09-06T01:57:36Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.