論文の概要: Aggregation on Learnable Manifolds for Asynchronous Federated Optimization
- arxiv url: http://arxiv.org/abs/2503.14396v3
- Date: Fri, 10 Oct 2025 14:45:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:45.188754
- Title: Aggregation on Learnable Manifolds for Asynchronous Federated Optimization
- Title(参考訳): 非同期フェデレーション最適化のための学習可能なマニフォールドの集約
- Authors: Archie Licudi, Anshul Thakur, Soheila Molaei, Danielle Belgrave, David Clifton,
- Abstract要約: 曲線学習としてアグリゲーションを取り入れた幾何学的枠組みを導入する。
そこで我々は,線形アグリゲーションを低次曲率成分に置き換えたAsyncBezierを提案する。
これらの利得は、他の方法がより高いローカルな計算予算に割り当てられた場合でも維持されることを示す。
- 参考スコア(独自算出の注目度): 3.8208848658169763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Asynchronous federated learning (FL) with heterogeneous clients faces two key issues: curvature-induced loss barriers encountered by standard linear parameter interpolation techniques (e.g. FedAvg) and interference from stale updates misaligned with the server's current optimisation state. To alleviate these issues, we introduce a geometric framework that casts aggregation as curve learning in a Riemannian model space and decouples trajectory selection from update conflict resolution. Within this, we propose AsyncBezier, which replaces linear aggregation with low-degree polynomial (Bezier) trajectories to bypass loss barriers, and OrthoDC, which projects delayed updates via inner product-based orthogonality to reduce interference. We establish framework-level convergence guarantees covering each variant given simple assumptions on their components. On three datasets spanning general-purpose and healthcare domains, including LEAF Shakespeare and FEMNIST, our approach consistently improves accuracy and client fairness over strong asynchronous baselines; finally, we show that these gains are preserved even when other methods are allocated a higher local compute budget.
- Abstract(参考訳): 不均一クライアントによる非同期フェデレーション学習(FL)は、標準的な線形パラメータ補間技術(例えばFedAvg)で発生する曲率誘起損失障壁と、サーバの現在の最適化状態と不一致なアップデートからの干渉の2つの大きな問題に直面している。
これらの問題を緩和するために、リーマンモデル空間における曲線学習としてアグリゲーションをキャストする幾何学的枠組みを導入し、更新競合解決から軌道選択を分離する。
そこで本研究では,線形アグリゲーションを低次多項式(Bezier)トラジェクトリに置き換えて損失障壁をバイパスするAsyncBezierと,干渉を低減するために内部積に基づく直交による更新を遅延させるOrthoDCを提案する。
フレームワークレベルの収束保証は、それぞれのコンポーネントに与えられた単純な仮定をカバーします。
LEAF Shakespeare や FEMNIST など,汎用および医療分野にまたがる3つのデータセットにおいて,当社のアプローチは,強い非同期ベースラインよりも精度とクライアントフェアネスを一貫して向上させる。
関連論文リスト
- Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
フェデレートラーニング(FL)は、データプライバシを保持しながら、分散エッジデバイス間で協調的なモデルトレーニングを可能にする。
我々は,レイヤワイドアグリゲーションのために,ラウンド単位の期限とユーザ固有のバッチサイズを共同で最適化する新しいフレームワークADEL-FLを提案する。
論文 参考訳(メタデータ) (2025-05-29T19:59:18Z) - Personalized Federated Learning under Model Dissimilarity Constraints [8.095373104009868]
KARULAは、パーソナライズド・フェデレーション・ラーニングのための規則化された戦略であり、分散の違いに基づいて、クライアント間のペアワイズモデルの相違を制約する。
理論上、KARULA は O (1/K) の近傍レート定常点に滑らかで、おそらくは非関係な損失に収束することを示す。
合成および実データ集合上でKARULAを実証し、高度に複雑な相互関係の戦略の有効性を示す。
論文 参考訳(メタデータ) (2025-05-12T13:54:55Z) - Federated Sinkhorn [2.589644824000165]
連合学習環境におけるエントロピー正規化による離散最適輸送問題の解法の可能性について検討する。
同期型と非同期型の両方、およびオール・ツー・オールおよびサーバ・クライアント型通信プロトコルを検討します。
合成データセットのアルゴリズム性能と実世界の金融リスク評価アプリケーションについて実証実験を行った。
論文 参考訳(メタデータ) (2025-02-10T20:29:57Z) - Decentralized Inference for Spatial Data Using Low-Rank Models [4.168323530566095]
本稿では,空間的低ランクモデルにおけるパラメータ推論に適した分散化フレームワークを提案する。
重要な障害は、観測中の空間的依存から生じ、ログのような状態が要約として表現されるのを防ぐ。
提案手法では,効率的なパラメータ最適化のために,マルチセンサと動的コンセンサス平均化を統合したブロック降下法を用いる。
論文 参考訳(メタデータ) (2025-02-01T04:17:01Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
分散学習計算(DFL)は、(i)モデル更新と(ii)モデルアグリゲーションの両方が中央サーバなしでクライアントによって実行されるFL設定をキャプチャする。
$textttDSpodFL$は、ローカルグラデーションとアグリゲーションプロセスの両方において、$textitsporadicity$という一般的な概念に基づいて構築されたDFL方法論である。
$textttDSpodFL$は、さまざまなシステム設定のベースラインと比較して、改善されたスピードを一貫して達成する。
論文 参考訳(メタデータ) (2024-02-05T19:02:19Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
我々はFedAggと呼ばれる適応型FEDerated Learningアルゴリズムを提案し、局所モデルパラメータと平均モデルパラメータのばらつきを緩和し、高速モデル収束率を得る。
IIDおよび非IIDデータセット下でのモデル性能の向上と収束速度の促進を目的として,本手法が既存のFL戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-28T08:07:28Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Decentralized Event-Triggered Federated Learning with Heterogeneous
Communication Thresholds [12.513477328344255]
ネットワークグラフトポロジ上での非同期なイベントトリガーによるコンセンサス反復による分散モデルアグリゲーションのための新しい手法を提案する。
本手法は,分散学習とグラフコンセンサス文学における標準的な仮定の下で,グローバルな最適学習モデルを実現することを実証する。
論文 参考訳(メタデータ) (2022-04-07T20:35:37Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
任意適応型オンラインモデルプルーニングを用いた異種FLアルゴリズムの一元化フレームワークを提案する。
特に、ある十分な条件下では、これらのアルゴリズムは一般的なスムーズなコスト関数に対して標準FLの定常点に収束する。
コンバージェンスに影響を与える2つの要因として,プルーニング誘導雑音と最小カバレッジ指数を照らす。
論文 参考訳(メタデータ) (2022-01-27T20:43:38Z) - Semantic Correspondence with Transformers [68.37049687360705]
本稿では,変換器を用いたコストアグリゲーション(CAT)を提案し,意味論的に類似した画像間の密接な対応を見出す。
初期相関マップと多レベルアグリゲーションを曖昧にするための外観親和性モデリングを含む。
提案手法の有効性を示す実験を行い,広範囲にわたるアブレーション研究を行った。
論文 参考訳(メタデータ) (2021-06-04T14:39:03Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。