論文の概要: PLAY2PROMPT: Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play
- arxiv url: http://arxiv.org/abs/2503.14432v1
- Date: Tue, 18 Mar 2025 17:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:18:22.601143
- Title: PLAY2PROMPT: Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play
- Title(参考訳): PLAY2PROMPT:Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play
- Authors: Wei Fang, Yang Zhang, Kaizhi Qian, James Glass, Yada Zhu,
- Abstract要約: 大規模言語モデル(LLM)は、特殊な外部ツールと統合されつつある。
多くのタスクは、最小限またはノイズの多いドキュメントでゼロショットツールの使用を要求する。
提案するPLAY2PROMPTは,各ツールの入力・出力動作を体系的に「再生」する自動フレームワークである。
- 参考スコア(独自算出の注目度): 24.784100934155237
- License:
- Abstract: Large language models (LLMs) are increasingly integrated with specialized external tools, yet many tasks demand zero-shot tool usage with minimal or noisy documentation. Existing solutions rely on manual rewriting or labeled data for validation, making them inapplicable in true zero-shot settings. To address these challenges, we propose PLAY2PROMPT, an automated framework that systematically "plays" with each tool to explore its input-output behaviors. Through this iterative trial-and-error process, PLAY2PROMPT refines tool documentation and generates usage examples without any labeled data. These examples not only guide LLM inference but also serve as validation to further enhance tool utilization. Extensive experiments on real-world tasks demonstrate that PLAY2PROMPT significantly improves zero-shot tool performance across both open and closed models, offering a scalable and effective solution for domain-specific tool integration.
- Abstract(参考訳): 大きな言語モデル(LLM)は、専門の外部ツールとますます統合されているが、多くのタスクは、最小限またはノイズの多いドキュメントでゼロショットツールの使用を要求する。
既存のソリューションは、バリデーションのために手書きの書き直しやラベル付きデータに依存しており、真のゼロショット設定では適用できない。
これらの課題に対処するため,PLAY2PROMPTを提案する。
この反復的な試行錯誤プロセスを通じて、PLAY2PROMPTはツールドキュメントを洗練し、ラベル付きデータなしで使用例を生成する。
これらの例は、LSM推論をガイドするだけでなく、ツールの利用をさらに促進するためのバリデーションとして役立ちます。
現実世界のタスクに関する大規模な実験は、PLAY2PROMPTがオープンモデルとクローズドモデルの両方でゼロショットツールのパフォーマンスを大幅に改善し、ドメイン固有のツール統合のためのスケーラブルで効果的なソリューションを提供することを示した。
関連論文リスト
- Self-Training Large Language Models for Tool-Use Without Demonstrations [15.17750971071501]
大規模言語モデル (LLMs) は、実際の不正確さや計算ミスに悩まされがちである。
最近の研究は、これらの欠点を緩和するツールを備えたLCMを強化しているが、しばしば金の工具使用デモを必要とする。
本稿では,LLMが実演なしでツールの活用を学べるかどうかを検討する。
論文 参考訳(メタデータ) (2025-02-09T12:06:10Z) - PTR: Precision-Driven Tool Recommendation for Large Language Models [43.53494041932615]
大規模言語モデル(LLM)のためのPTR(Precision-driven Tool Recommendation)アプローチを提案する。
PTRは、過去のツールバンドルの利用を利用して、初期的かつ簡潔なツールセットをキャプチャし、ツールマッチングを実行することで、ツールセットを動的に調整する。
LLMのツールレコメンデーションの有効性を評価するために,新しいデータセットRecToolsとメトリクスTRACCを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:33:36Z) - Learning to Ask: When LLM Agents Meet Unclear Instruction [55.65312637965779]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - Tool Learning in the Wild: Empowering Language Models as Automatic Tool Agents [56.822238860147024]
大規模な言語モデルを外部ツールで拡張することは、彼らのユーティリティを拡張するための有望なアプローチとして現れました。
以前のメソッドは、ツールドキュメントを手動で解析し、コンテキスト内デモを作成し、ツールをLLMがステップバイステップの推論で使用する構造化フォーマットに変換する。
LLMがツール使用ワークフローを自動化できるフレームワークであるAutoToolsを提案する。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Tool Documentation Enables Zero-Shot Tool-Usage with Large Language
Models [90.96816639172464]
大規模言語モデル(LLM)は、ツールの使用のデモを提供することで、新しいツールを使用するように教えられている。
デモよりも、ツールドキュメンテーションの使用、個々のツール使用方法の説明を推奨します。
論文 参考訳(メタデータ) (2023-08-01T17:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。