論文の概要: Graph-CNNs for RF Imaging: Learning the Electric Field Integral Equations
- arxiv url: http://arxiv.org/abs/2503.14439v1
- Date: Tue, 18 Mar 2025 17:16:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:13.594283
- Title: Graph-CNNs for RF Imaging: Learning the Electric Field Integral Equations
- Title(参考訳): RFイメージングのためのグラフCNN:電場積分方程式の学習
- Authors: Kyriakos Stylianopoulos, Panagiotis Gavriilidis, Gabriele Gradoni, George C. Alexandropoulos,
- Abstract要約: 本稿では、対応する逆モデルを学ぶために、ディープニューラルネットワーク(DNN)アーキテクチャを提案する。
グラフアテンションバックボーンは、システムのジオメトリをDNNに渡すことができ、残余の畳み込み層がオブジェクトの特徴を抽出する。
異なる特徴を持つ2つの合成データセットに対する評価は、提案した高度なアーキテクチャの性能向上を示す。
- 参考スコア(独自算出の注目度): 20.07924835384647
- License:
- Abstract: Radio-Frequency (RF) imaging concerns the digital recreation of the surfaces of scene objects based on the scattered field at distributed receivers. To solve this difficult inverse scattering problems, data-driven methods are often employed that extract patterns from similar training examples, while offering minimal latency. In this paper, we first provide an approximate yet fast electromagnetic model, which is based on the electric field integral equations, for data generation, and subsequently propose a Deep Neural Network (DNN) architecture to learn the corresponding inverse model. A graph-attention backbone allows for the system geometry to be passed to the DNN, where residual convolutional layers extract features about the objects, while a UNet head performs the final image reconstruction. Our quantitative and qualitative evaluations on two synthetic data sets of different characteristics showcase the performance gains of thee proposed advanced architecture and its relative resilience to signal noise levels and various reception configurations.
- Abstract(参考訳): RF(Radio-Frequency)画像は、分散受信機における散乱場に基づいて、シーンオブジェクトの表面をデジタルレクリエーションする。
このような難しい逆散乱問題を解決するために、データ駆動方式は、遅延を最小限に抑えながら、類似のトレーニング例からパターンを抽出することが多い。
本稿では、まず、電場積分方程式に基づく近似的かつ高速な電磁モデルを用いてデータ生成を行い、その後、対応する逆モデルを学ぶためのDeep Neural Network(DNN)アーキテクチャを提案する。
グラフアテンションバックボーンはシステムジオメトリをDNNに渡すことができ、残った畳み込み層がオブジェクトの特徴を抽出し、UNetヘッドが最終的な画像再構成を行う。
特徴の異なる2つの合成データセットの定量的および質的評価は,提案した高度なアーキテクチャの性能向上と,信号雑音レベルと各種受信構成に対する相対的なレジリエンスを示す。
関連論文リスト
- From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - GAN-driven Electromagnetic Imaging of 2-D Dielectric Scatterers [4.510838705378781]
逆散乱問題は、それらが不適切で非線形であるという事実を考えると、本質的に困難である。
本稿では、生成的対向ネットワークに依存する強力なディープラーニングに基づくアプローチを提案する。
適切に設計された高密度層からなる凝集性逆ニューラルネットワーク(INN)フレームワークが設定される。
トレーニングされたINNは、平均2進クロスエントロピー(BCE)損失が0.13ドル、構造類似度指数(SSI)が0.90ドルであることを示す。
論文 参考訳(メタデータ) (2024-02-16T17:03:08Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFieldsは、複雑な時間的信号を効果的に表現するために設計された新しいネットワークのクラスである。
本稿では,ResFieldの特性を包括的に解析し,トレーニング可能なパラメータの数を減らすための行列分解手法を提案する。
スパースRGBDカメラからダイナミックな3Dシーンをキャプチャする効果を示すことで,ResFieldsの実用性を実証する。
論文 参考訳(メタデータ) (2023-09-06T16:59:36Z) - Factor Fields: A Unified Framework for Neural Fields and Beyond [50.29013417187368]
本稿では、信号のモデリングと表現のための新しいフレームワークであるFacter Fieldsを紹介する。
我々のフレームワークは、NeRF、Plenoxels、EG3D、Instant-NGP、TensoRFなどの最近の信号表現に対応している。
この表現は,2次元画像回帰作業における画像の近似精度の向上,3次元符号付き距離場再構築時の幾何学的品質の向上,および放射場再構成作業におけるコンパクト性の向上を実現している。
論文 参考訳(メタデータ) (2023-02-02T17:06:50Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - Noise Reduction in X-ray Photon Correlation Spectroscopy with
Convolutional Neural Networks Encoder-Decoder Models [0.0]
2時間相関関数における信号対雑音比を改善するための計算手法を提案する。
CNN-EDモデルは、畳み込みニューラルネットワークデコーダ(CNN-ED)モデルに基づいている。
実世界の実験データに基づいて訓練されたCNN-EDモデルにより,2時間相関関数から平衡力学パラメータを効果的に抽出できることが実証された。
論文 参考訳(メタデータ) (2021-02-07T18:38:59Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
本稿では,リカレントニューラルネットワークのための新しいアーキテクチャを提案する。
提案するRNNは, 2次常微分方程式系の時間分解に基づく。
実験の結果,提案したRNNは,様々なベンチマークによる最先端技術に匹敵する性能を示した。
論文 参考訳(メタデータ) (2020-10-02T12:35:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。