論文の概要: EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data
- arxiv url: http://arxiv.org/abs/2503.14473v1
- Date: Tue, 18 Mar 2025 17:48:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:53.453739
- Title: EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data
- Title(参考訳): EnQode: 古典的データを用いた量子機械学習のための高速振幅埋め込み
- Authors: Jason Han, Nicholas S. DiBrita, Younghyun Cho, Hengrui Luo, Tirthak Patel,
- Abstract要約: 古典的なデータを量子回路に符号化するためには、振幅埋め込み(AE)が量子機械学習(QML)に不可欠である。
本稿では,データセットのクラスタリングによる制限に対処するシンボリック表現に基づく高速AE手法EnQodeを紹介する。
データマッピングにおける90%以上の忠実さを持つEnQodeは、ノイズの多い中間スケール量子(NISQ)デバイス上で、堅牢で高性能なQMLを実現する。
- 参考スコア(独自算出の注目度): 4.329112531155235
- License:
- Abstract: Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods suffer from deep, variable-length circuits that introduce high output error due to extensive gate usage and variable error rates across samples, resulting in noise-driven inconsistencies that degrade model accuracy. We introduce EnQode, a fast AE technique based on symbolic representation that addresses these limitations by clustering dataset samples and solving for cluster mean states through a low-depth, machine-specific ansatz. Optimized to reduce physical gates and SWAP operations, EnQode ensures all samples face consistent, low noise levels by standardizing circuit depth and composition. With over 90% fidelity in data mapping, EnQode enables robust, high-performance QML on noisy intermediate-scale quantum (NISQ) devices. Our open-source solution provides a scalable and efficient alternative for integrating classical data with quantum models.
- Abstract(参考訳): 古典的なデータを量子回路に符号化するためには、振幅埋め込み(AE)が量子機械学習(QML)に不可欠である。
しかし、従来のAE法では、ゲート使用量とサンプル間の可変誤差率による高い出力誤差をもたらす、深い可変長回路に悩まされており、結果としてモデル精度を劣化させるノイズ駆動の不整合が生じている。
本稿では,これらの制約に対処するシンボル表現に基づく高速AE技術であるEnQodeを紹介し,低深さのマシン固有アンサッツを用いて,データセットサンプルのクラスタリングとクラスタ平均状態の解決を行う。
物理ゲートとSWAP操作の削減に最適化されたEnQodeは、回路深さと構成を標準化することで、全てのサンプルが一貫した低ノイズレベルに直面していることを保証している。
データマッピングにおける90%以上の忠実さを持つEnQodeは、ノイズの多い中間スケール量子(NISQ)デバイス上で、堅牢で高性能なQMLを実現する。
私たちのオープンソースのソリューションは、古典的なデータと量子モデルを統合するためのスケーラブルで効率的な代替手段を提供します。
関連論文リスト
- Patch-Based End-to-End Quantum Learning Network for Reduction and Classification of Classical Data [0.22099217573031676]
ノイズの多い中間スケール量子(NISQ)時代には、量子デコヒーレンス、クロストーク、不完全校正による誤差により、量子ビットの制御が制限される。
量子ネットワークによって処理される場合,画像などの大規模古典データのサイズを小さくする必要がある。
本稿では、このようなデータ削減を回避するために、古典的な注意機構を持つ動的パッチベースの量子ドメインデータ削減ネットワークを提案する。
論文 参考訳(メタデータ) (2024-09-23T16:58:02Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - Attention to Quantum Complexity [21.766643620345494]
我々は,汎用的な古典的AIフレームワークQuantum Attention Network(QuAN)を紹介する。
QuANは、測定スナップショットをトークンとして扱い、置換不変性を尊重する。
われわれはQuANを3つの異なる量子シミュレーション設定で厳格にテストしている。
論文 参考訳(メタデータ) (2024-05-19T17:46:40Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Variational Denoising for Variational Quantum Eigensolver [0.28675177318965045]
変分量子固有解法 (VQE) は、実用的な化学問題に量子的優位性を与える可能性を持つハイブリッドアルゴリズムである。
VQEは、特にノイズの多い量子デバイス上で動作する場合、タスク固有の設計とマシン固有のアーキテクチャの課題に直面します。
本稿では,VQEの解法を改善するために,パラメータ化量子ニューラルネットワークを用いた教師なし学習手法である変分分解を提案する。
論文 参考訳(メタデータ) (2023-04-02T14:56:15Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
連続可変量子鍵分布(QKD)は、ボソニックモードの二次構造を用いて、2つのリモートパーティ間の秘密鍵を確立する。
構成可能な有限サイズセキュリティの一般的な設定におけるホモダイン検出プロトコルについて検討する。
特に、ハイレート(非バイナリ)の低密度パリティチェックコードを使用する必要のあるハイシグネチャ・ツー・ノイズ・システマを解析する。
論文 参考訳(メタデータ) (2021-03-30T18:02:55Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。