Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence
- URL: http://arxiv.org/abs/2503.14749v1
- Date: Tue, 18 Mar 2025 21:29:29 GMT
- Title: Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence
- Authors: Sophia Hager, David Mueller, Kevin Duh, Nicholas Andrews,
- Abstract summary: Large language models (LLMs) are increasingly used for factual question-answering.<n>For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence.<n>Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated.
- Score: 16.311538811237536
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As large language models (LLMs) are increasingly used for factual question-answering, it becomes more important for LLMs to have the capability to communicate the likelihood that their answer is correct. For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence. However, when prompted to express confidence, the error rates of current LLMs are inconsistent with their communicated confidences, highlighting the need for uncertainty quantification methods. Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated. In some cases, however, it may be more useful to estimate semantic uncertainty, or the model's confidence in the answer regardless of how it is verbalized. We propose a simple procedure, uncertainty distillation, to teach an LLM to verbalize calibrated semantic confidences. Using held-out data to map initial uncertainty estimates to meaningful probabilities, we create examples annotated with verbalized probabilities for supervised fine-tuning. We demonstrate our method yields verbalized confidences that correlate with observed error rates with a small fine-tuned language model as well as with larger instruction-tuned models, and find that our semantic uncertainty correlates well with lexical uncertainty on short answers.
Related papers
- Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations [51.92795774118647]
We find that verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs.
We show that this has only moderate correlation with the actual semantic uncertainty'' of the model.
arXiv Detail & Related papers (2025-03-18T17:51:04Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.<n>We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.<n>This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.<n>We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning [10.457661605916435]
Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities.<n>LLMs are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as hallucinations.<n>We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory.
arXiv Detail & Related papers (2024-12-03T23:14:47Z) - Finetuning Language Models to Emit Linguistic Expressions of Uncertainty [5.591074369497796]
Large language models (LLMs) are increasingly employed in information-seeking and decision-making tasks.
LLMs tend to generate information that conflicts with real-world facts, and their persuasive style can make these inaccuracies appear confident and convincing.
In this work, we explore supervised finetuning on uncertainty-augmented predictions as a method to develop models that produce linguistic expressions of uncertainty.
arXiv Detail & Related papers (2024-09-18T17:52:53Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Can Large Language Models Faithfully Express Their Intrinsic Uncertainty in Words? [21.814007454504978]
We show that large language models (LLMs) should be capable of expressing their intrinsic uncertainty in natural language.
We formalize faithful response uncertainty based on the gap between the model's intrinsic confidence in the assertions it makes and the decisiveness by which they are conveyed.
arXiv Detail & Related papers (2024-05-27T07:56:23Z) - Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations [63.330182403615886]
A major barrier towards the practical deployment of large language models (LLMs) is their lack of reliability.
Three situations where this is particularly apparent are correctness, hallucinations when given unanswerable questions, and safety.
In all three cases, models should ideally abstain from responding, much like humans, whose ability to understand uncertainty makes us refrain from answering questions we don't know.
arXiv Detail & Related papers (2024-04-16T23:56:38Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.