論文の概要: Machine learning algorithms to predict stroke in China based on causal inference of time series analysis
- arxiv url: http://arxiv.org/abs/2503.14512v1
- Date: Mon, 10 Mar 2025 14:45:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 06:09:53.718643
- Title: Machine learning algorithms to predict stroke in China based on causal inference of time series analysis
- Title(参考訳): 時系列分析の因果推論に基づく中国の脳卒中予測のための機械学習アルゴリズム
- Authors: Qizhi Zheng, Ayang Zhao, Xinzhu Wang, Yanhong Bai, Zikun Wang, Xiuying Wang, Xianzhang Zeng, Guanghui Dong,
- Abstract要約: 本研究では,動的因果推論と機械学習モデルを組み合わせた脳卒中リスク予測手法を提案する。
その結果,脳卒中リスクの予測には動的因果推論の特徴が重要であることが示唆された。
- 参考スコア(独自算出の注目度): 1.7646715816998508
- License:
- Abstract: Participants: This study employed a combination of Vector Autoregression (VAR) model and Graph Neural Networks (GNN) to systematically construct dynamic causal inference. Multiple classic classification algorithms were compared, including Random Forest, Logistic Regression, XGBoost, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosting, and Multi Layer Perceptron (MLP). The SMOTE algorithm was used to undersample a small number of samples and employed Stratified K-fold Cross Validation. Results: This study included a total of 11,789 participants, including 6,334 females (53.73%) and 5,455 males (46.27%), with an average age of 65 years. Introduction of dynamic causal inference features has significantly improved the performance of almost all models. The area under the ROC curve of each model ranged from 0.78 to 0.83, indicating significant difference (P < 0.01). Among all the models, the Gradient Boosting model demonstrated the highest performance and stability. Model explanation and feature importance analysis generated model interpretation that illustrated significant contributors associated with risks of stroke. Conclusions and Relevance: This study proposes a stroke risk prediction method that combines dynamic causal inference with machine learning models, significantly improving prediction accuracy and revealing key health factors that affect stroke. The research results indicate that dynamic causal inference features have important value in predicting stroke risk, especially in capturing the impact of changes in health status over time on stroke risk. By further optimizing the model and introducing more variables, this study provides theoretical basis and practical guidance for future stroke prevention and intervention strategies.
- Abstract(参考訳): 参加者:本研究では,動的因果推論を体系的に構築するために,ベクトル自己回帰(VAR)モデルとグラフニューラルネットワーク(GNN)を組み合わせた。
Random Forest, Logistic Regression, XGBoost, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosting, Multi Layer Perceptron (MLP)など,複数の古典的分類アルゴリズムを比較した。
SMOTEアルゴリズムは少数のサンプルをアンサンプし、Stratified K-fold Cross Validationを採用した。
結果: 調査対象は合計11,789人であり, 女性6,334人(53.73%), 男性5,455人(46.27%), 平均年齢65歳であった。
動的因果推論機能の導入により、ほぼ全てのモデルの性能が大幅に向上した。
各モデルのROC曲線下の面積は0.78から0.83であり、有意差(P < 0.01)を示した。
全てのモデルの中で、グラディエント・ブースティング・モデルは最高の性能と安定性を示した。
モデル説明と特徴重要度分析は、脳卒中リスクに関連する重要な貢献者を示すモデル解釈を生成した。
結論と関連性:本研究では,ダイナミック因果推論と機械学習モデルを組み合わせた脳卒中リスク予測手法を提案する。
その結果,脳卒中リスクの予測には動的因果推論の特徴が重要であり,特に脳卒中リスクの経時的変化が脳卒中リスクに与える影響を把握できることが示唆された。
本研究は、モデルをさらに最適化し、より多くの変数を導入することにより、将来の脳卒中予防と介入戦略の理論的基礎と実践的ガイダンスを提供する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
5種類の機械学習手法の分類精度,精度,リコール,F-1スコアを評価し,比較した。
XGBoostは97%という最高のモデル精度を達成した。
論文 参考訳(メタデータ) (2024-04-06T17:23:21Z) - A comparative study on feature selection for a risk prediction model for
colorectal cancer [0.0]
この研究は大腸癌に焦点を当て、リスク予測モデルのパフォーマンスの観点からいくつかの特徴ランキングアルゴリズムを評価する。
この研究で提案された視覚的アプローチにより、ニューラルネットワークベースのラッパーランキングが最も不安定であり、ランダムフォレストが最も安定である。
論文 参考訳(メタデータ) (2024-02-07T22:14:14Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Learning Clinical Concepts for Predicting Risk of Progression to Severe
COVID-19 [17.781861866125023]
大手医療機関のデータを用いて、重度の新型コロナウイルスの進行を予測する生存モデルを開発する。
i) 利用可能なすべての特徴から構築された制約のないモデル,(ii) リスク予測器を訓練する前に少数の臨床概念を学習するパイプラインである。
論文 参考訳(メタデータ) (2022-08-28T02:59:35Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
MIDUS(Midlife in the United States)の観察・コホート研究から得られたデータを用いて,エグゼクティブ機能とエピソード記憶測定をモデル化した。
ディープニューラルネットワーク(DNN)モデルは、認知パフォーマンス予測タスクの中で一貫して最高である。
論文 参考訳(メタデータ) (2021-12-28T22:23:08Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - The Consequences of the Framing of Machine Learning Risk Prediction
Models: Evaluation of Sepsis in General Wards [0.0]
フレーミングがモデル性能とモデル学習に与える影響を4つの異なるアプローチで評価する。
デンマークの4自治体の221,283人の二次医療データを分析した。
論文 参考訳(メタデータ) (2021-01-26T14:00:05Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。