論文の概要: Spline refinement with differentiable rendering
- arxiv url: http://arxiv.org/abs/2503.14525v1
- Date: Sat, 15 Mar 2025 09:42:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:26:02.471192
- Title: Spline refinement with differentiable rendering
- Title(参考訳): 微分可能レンダリングによるスプライン改質
- Authors: Frans Zdyb, Albert Alonso, Julius B. Kirkegaard,
- Abstract要約: スプラインリファインメントのための訓練不要な微分可能レンダリング手法を提案する。
本手法は,高信頼性とサブピクセル精度を実現する。
完全に教師されていないため、この方法は人気のあるアクティブな輪郭モデルの代替となる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting slender, overlapping structures remains a challenge in computational microscopy. While recent coordinate-based approaches improve detection, they often produce less accurate splines than pixel-based methods. We introduce a training-free differentiable rendering approach to spline refinement, achieving both high reliability and sub-pixel accuracy. Our method improves spline quality, enhances robustness to distribution shifts, and shrinks the gap between synthetic and real-world data. Being fully unsupervised, the method is a drop-in replacement for the popular active contour model for spline refinement. Evaluated on C. elegans nematodes, a popular model organism for drug discovery and biomedical research, we demonstrate that our approach combines the strengths of both coordinate- and pixel-based methods.
- Abstract(参考訳): 細い重なり合う構造を検出することは、計算顕微鏡の課題である。
最近の座標ベースのアプローチは検出を改善するが、しばしばピクセルベースの方法よりも精度の低いスプラインを生成する。
本研究では,高信頼性とサブピクセル精度の両立を実現し,高精細化のための訓練自由微分可能レンダリング手法を提案する。
提案手法は,スプライン品質の向上,分散シフトに対するロバスト性の向上,および合成データと実世界のデータとのギャップを縮小する。
完全に教師されていないため、この方法はスプライン改良のための一般的なアクティブな輪郭モデルのドロップイン置換である。
C. elegans nematodes (C. elegans nematodes) は医薬品の発見と生物医学研究に人気のあるモデル生物である。
関連論文リスト
- Uncertainty-aware retinal layer segmentation in OCT through probabilistic signed distance functions [6.765624289092461]
オプティカルコヒーレンス・トモグラフィー(OCT)スキャンにおける不確実性認識網膜層セグメンテーションの新しいアプローチを提案する。
本手法は、レベルセットを介して網膜層形状を効果的にパラメータ化する符号付き距離関数(SDF)を予測することにより、セグメンテーションを洗練する。
これにより、あいまいな入力、撮像ノイズ、信頼できないセグメンテーションが存在する場合でも、網膜層の堅牢な表現が保証される。
論文 参考訳(メタデータ) (2024-12-06T10:44:11Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
画像ベース剛性2D/3Dレジストレーションは, 蛍光ガイド下外科手術において重要な技術である。
デュアルブランチCNN変換器エンコーダを用いた完全微分型相関型ネットワークを提案する。
組込み情報に基づく低周波特徴と高周波特徴の分解に対して相関型損失を提案する。
論文 参考訳(メタデータ) (2024-02-04T14:12:51Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of
Anisotropic MRI [1.281734910003263]
符号化された低解像度例から新しい中間スライスを合成する教師なしのディープラーニングセマンティックアプローチを提案する。
この手法は, 立方体Bスプライン法よりも構造類似度指数測定とピーク信号対雑音比で有意に優れた結果が得られる。
論文 参考訳(メタデータ) (2022-02-18T15:40:00Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。