Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges
- URL: http://arxiv.org/abs/2503.14541v1
- Date: Mon, 17 Mar 2025 14:29:09 GMT
- Title: Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges
- Authors: Shahmar Mirishli,
- Abstract summary: Article examines the evolving landscape of artificial intelligence (AI) regulation in financial services.<n>It highlights how AI-driven processes, from fraud detection to algorithmic trading, offer efficiency gains yet introduce significant risks.<n>The study compares regulatory approaches across major jurisdictions such as the European Union, United States, and United Kingdom.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article examines the evolving landscape of artificial intelligence (AI) regulation in financial services, detailing the legal frameworks and compliance challenges posed by rapid technological adoption. By reviewing current legislation, industry guidelines, and real-world use cases, it highlights how AI-driven processes, from fraud detection to algorithmic trading, offer efficiency gains yet introduce significant risks, including algorithmic bias, data privacy breaches, and lack of transparency in automated decision-making. The study compares regulatory approaches across major jurisdictions such as the European Union, United States, and United Kingdom, identifying both universal concerns, like the need for explainability and robust data protection, and region-specific compliance requirements that impact the implementation of high-risk AI applications. Additionally, it underscores emerging areas of focus, such as liability for AI-driven errors, systemic risks posed by interlinked AI systems, and the ethical considerations of technology-driven financial exclusion. The findings reveal gaps in existing rules and emphasize the necessity for adaptive, technology-neutral policies capable of fostering innovation while safeguarding consumer rights and market integrity. The article concludes by proposing a principled regulatory model that balances flexibility with enforceable standards, advocating closer collaboration between policymakers, financial institutions, and AI developers to ensure a secure, fair, and forward-looking framework for AI in finance.
Related papers
- HH4AI: A methodological Framework for AI Human Rights impact assessment under the EUAI ACT [1.7754875105502606]
The paper highlights AIs transformative nature, driven by autonomy, data, and goal-oriented design.
A key challenge is defining and assessing "high-risk" AI systems across industries.
It proposes a Fundamental Rights Impact Assessment (FRIA) methodology, a gate-based framework designed to isolate and assess risks.
arXiv Detail & Related papers (2025-03-23T19:10:14Z) - In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
We call for three interventions to advance system safety.
First, we propose using standardized AI flaw reports and rules of engagement for researchers.
Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs.
Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports.
arXiv Detail & Related papers (2025-03-21T05:09:46Z) - Compliance of AI Systems [0.0]
This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act.<n>The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources.<n>The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems.
arXiv Detail & Related papers (2025-03-07T16:53:36Z) - Mapping the Regulatory Learning Space for the EU AI Act [0.8987776881291145]
The EU's AI Act represents the world first transnational AI regulation with concrete enforcement measures.<n>It builds upon existing EU mechanisms for product health and safety regulation, but extends it to protect fundamental rights.<n>These extensions introduce uncertainties in terms of how the technical state of the art will be applied to AI system certification and enforcement actions.<n>We argue that these uncertainties, coupled with the fast changing nature of AI and the relative immaturity of the state of the art in fundamental rights risk management require the implementation of the AI Act to place a strong emphasis on comprehensive and rapid regulatory learning.
arXiv Detail & Related papers (2025-02-27T12:46:30Z) - Between Innovation and Oversight: A Cross-Regional Study of AI Risk Management Frameworks in the EU, U.S., UK, and China [0.0]
This paper conducts a comparative analysis of AI risk management strategies across the European Union, United States, United Kingdom (UK), and China.<n>The findings show that the EU implements a structured, risk-based framework that prioritizes transparency and conformity assessments.<n>The U.S. uses a decentralized, sector-specific regulations that promote innovation but may lead to fragmented enforcement.
arXiv Detail & Related papers (2025-02-25T18:52:17Z) - Securing the AI Frontier: Urgent Ethical and Regulatory Imperatives for AI-Driven Cybersecurity [0.0]
This paper critically examines the evolving ethical and regulatory challenges posed by the integration of artificial intelligence in cybersecurity.<n>We trace the historical development of AI regulation, highlighting major milestones from theoretical discussions in the 1940s to the implementation of recent global frameworks such as the European Union AI Act.<n>Ethical concerns such as bias, transparency, accountability, privacy, and human oversight are explored in depth, along with their implications for AI-driven cybersecurity systems.
arXiv Detail & Related papers (2025-01-15T18:17:37Z) - COMPL-AI Framework: A Technical Interpretation and LLM Benchmarking Suite for the EU Artificial Intelligence Act [40.233017376716305]
The EU's Artificial Intelligence Act (AI Act) is a significant step towards responsible AI development.<n>It lacks clear technical interpretation, making it difficult to assess models' compliance.<n>This work presents COMPL-AI, a comprehensive framework consisting of the first technical interpretation of the Act.
arXiv Detail & Related papers (2024-10-10T14:23:51Z) - Evaluating AI for Law: Bridging the Gap with Open-Source Solutions [32.550204238857724]
This study evaluates the performance of general-purpose AI, like ChatGPT, in legal question-answering tasks.
It suggests leveraging foundational models enhanced by domain-specific knowledge to overcome these issues.
arXiv Detail & Related papers (2024-04-18T17:26:01Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
The application of AI in the financial sector is transforming the industry.
However, along with these benefits, AI also presents several challenges.
These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness.
The use of AI in the financial sector further raises critical questions about data privacy and security.
Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance.
arXiv Detail & Related papers (2023-08-31T08:30:09Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.