Sequence Analysis Using the Bezier Curve
- URL: http://arxiv.org/abs/2503.14574v1
- Date: Tue, 18 Mar 2025 15:40:46 GMT
- Title: Sequence Analysis Using the Bezier Curve
- Authors: Taslim Murad, Sarwan Ali, Murray Patterson,
- Abstract summary: We introduce a novel approach to transform sequences into images using the B'ezier curve concept for element mapping.<n> Mapping the elements onto a curve enhances the sequence information representation in the respective images.
- Score: 3.9052860539161918
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The analysis of sequences (e.g., protein, DNA, and SMILES string) is essential for disease diagnosis, biomaterial engineering, genetic engineering, and drug discovery domains. Conventional analytical methods focus on transforming sequences into numerical representations for applying machine learning/deep learning-based sequence characterization. However, their efficacy is constrained by the intrinsic nature of deep learning (DL) models, which tend to exhibit suboptimal performance when applied to tabular data. An alternative group of methodologies endeavors to convert biological sequences into image forms by applying the concept of Chaos Game Representation (CGR). However, a noteworthy drawback of these methods lies in their tendency to map individual elements of the sequence onto a relatively small subset of designated pixels within the generated image. The resulting sparse image representation may not adequately encapsulate the comprehensive sequence information, potentially resulting in suboptimal predictions. In this study, we introduce a novel approach to transform sequences into images using the B\'ezier curve concept for element mapping. Mapping the elements onto a curve enhances the sequence information representation in the respective images, hence yielding better DL-based classification performance. We employed different sequence datasets to validate our system by using different classification tasks, and the results illustrate that our B\'ezier curve method is able to achieve good performance for all the tasks.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
We develop a graph-based framework that constructs WSI graph representations.<n>We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches.<n>In our method's final step, we solve the diagnostic task through a graph attention network.
arXiv Detail & Related papers (2025-03-14T20:15:04Z) - Hilbert Curve Based Molecular Sequence Analysis [2.949890760187898]
We propose a universal Hibert curve-based Chaos Game Representation (CGR) method.<n>This method is a transformative function that involves a novel Alphabetic index mapping technique used in constructing Hilbert curve-based image representation from molecular sequences.<n>The proposed method shows promising results as it outperforms current state-of-the-art methods by achieving a high accuracy of $94.5$% and an F1 score of $93.9%$ when tested with the CNN model on the lung cancer dataset.
arXiv Detail & Related papers (2024-12-29T23:26:43Z) - A Segmentation Method for fluorescence images without a machine learning
approach [0.0]
This study describes a deterministic computational neuroscience approach for identifying cells and nuclei.
The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets.
arXiv Detail & Related papers (2022-12-28T16:47:05Z) - Analysis of convolutional neural network image classifiers in a
rotationally symmetric model [4.56877715768796]
The rate of convergence of the misclassification risk of the estimates towards the optimal misclassification risk is analyzed.
It is shown that least squares plug-in classifiers based on convolutional neural networks are able to circumvent the curse of dimensionality in binary image classification.
arXiv Detail & Related papers (2022-05-11T13:43:13Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
Generative adversarial networks (GANs) are one kind of DGM which are widely employed.
In this work, we demonstrate several objective tests of images output by two popular GAN architectures.
We designed several context models (SCMs) of distinct image features that can be recovered after generation by a trained GAN.
arXiv Detail & Related papers (2021-11-24T15:58:10Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels.
We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions.
The resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments.
arXiv Detail & Related papers (2021-10-01T13:47:07Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples.
Existing meta-learning method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space.
This paper presents an adaptive framework tuning, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme.
arXiv Detail & Related papers (2020-04-12T03:53:53Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.