Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation
- URL: http://arxiv.org/abs/2110.00404v1
- Date: Fri, 1 Oct 2021 13:47:07 GMT
- Title: Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation
- Authors: Dwarikanath Mahapatra
- Abstract summary: We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels.
We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions.
The resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments.
- Score: 4.898744396854313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of Prostate Cancer (PCa) tissues from Gleason graded
histopathology images is vital for accurate diagnosis. Although deep learning
(DL) based segmentation methods achieve state-of-the-art accuracy, they rely on
large datasets with manual annotations. We propose a method to synthesize for
PCa histopathology images by learning the geometrical relationship between
different disease labels using self-supervised learning. We use a weakly
supervised segmentation approach that uses Gleason score to segment the
diseased regions and the resulting segmentation map is used to train a Shape
Restoration Network (ShaRe-Net) to predict missing mask segments in a
self-supervised manner. Using DenseUNet as the backbone generator architecture
we incorporate latent variable sampling to inject diversity in the image
generation process and thus improve robustness. Experiments on multiple
histopathology datasets demonstrate the superiority of our method over
competing image synthesis methods for segmentation tasks. Ablation studies show
the benefits of integrating geometry and diversity in generating high-quality
images, and our self-supervised approach with limited class-labeled data
achieves similar performance as fully supervised learning.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
Tumor region segmentation is an essential task for the quantitative analysis of digital pathology.
Recent deep neural networks have shown state-of-the-art performance in various image-segmentation tasks.
We propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions.
arXiv Detail & Related papers (2023-07-03T13:45:24Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
We propose a contrast-based variational model to generate segmentation results for histopathology images.
The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner.
It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled novel' regions.
arXiv Detail & Related papers (2023-04-07T10:12:21Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - CT Image Synthesis Using Weakly Supervised Segmentation and Geometric
Inter-Label Relations For COVID Image Analysis [4.898744396854313]
We propose improvements over previous GAN-based medical image synthesis methods by learning the relationship between different anatomical labels.
We use the synthetic images from our method to train networks for segmenting COVID-19 infected areas from lung CT images.
arXiv Detail & Related papers (2021-06-15T07:21:24Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.