Generating Medically-Informed Explanations for Depression Detection using LLMs
- URL: http://arxiv.org/abs/2503.14671v1
- Date: Tue, 18 Mar 2025 19:23:22 GMT
- Title: Generating Medically-Informed Explanations for Depression Detection using LLMs
- Authors: Xiangyong Chen, Xiaochuan Lin,
- Abstract summary: Early detection of depression from social media data offers a valuable opportunity for timely intervention.<n>We propose LLM-MTD (Large Language Model for Multi-Task Depression Detection), a novel approach that combines the power of large language models with the crucial aspect of explainability.
- Score: 1.325953054381901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of depression from social media data offers a valuable opportunity for timely intervention. However, this task poses significant challenges, requiring both professional medical knowledge and the development of accurate and explainable models. In this paper, we propose LLM-MTD (Large Language Model for Multi-Task Depression Detection), a novel approach that leverages a pre-trained large language model to simultaneously classify social media posts for depression and generate textual explanations grounded in medical diagnostic criteria. We train our model using a multi-task learning framework with a combined loss function that optimizes both classification accuracy and explanation quality. We evaluate LLM-MTD on the benchmark Reddit Self-Reported Depression Dataset (RSDD) and compare its performance against several competitive baseline methods, including traditional machine learning and fine-tuned BERT. Our experimental results demonstrate that LLM-MTD achieves state-of-the-art performance in depression detection, showing significant improvements in AUPRC and other key metrics. Furthermore, human evaluation of the generated explanations reveals their relevance, completeness, and medical accuracy, highlighting the enhanced interpretability of our approach. This work contributes a novel methodology for depression detection that combines the power of large language models with the crucial aspect of explainability.
Related papers
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Dementia Insights: A Context-Based MultiModal Approach [0.3749861135832073]
Early detection is crucial for timely interventions that may slow disease progression.<n>Large pre-trained models (LPMs) for text and audio have shown promise in identifying cognitive impairments.<n>This study proposes a context-based multimodal method, integrating both text and audio data using the best-performing LPMs.
arXiv Detail & Related papers (2025-03-03T06:46:26Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - A BERT-Based Summarization approach for depression detection [1.7363112470483526]
Depression is a globally prevalent mental disorder with potentially severe repercussions if not addressed.
Machine learning and artificial intelligence can autonomously detect depression indicators from diverse data sources.
Our study proposes text summarization as a preprocessing technique to diminish the length and intricacies of input texts.
arXiv Detail & Related papers (2024-09-13T02:14:34Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
Depression detection aims to determine whether an individual suffers from depression by analyzing their history of posts on social media.
We propose a novel depression detection system called DORIS, combining medical knowledge and the recent advances in large language models.
arXiv Detail & Related papers (2024-03-16T01:01:16Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Multimodal Depression Severity Prediction from medical bio-markers using
Machine Learning Tools and Technologies [0.0]
Depression has been a leading cause of mental-health illnesses across the world.
Using behavioural cues to automate depression diagnosis and stage prediction in recent years has relatively increased.
The absence of labelled behavioural datasets and a vast amount of possible variations prove to be a major challenge in accomplishing the task.
arXiv Detail & Related papers (2020-09-11T20:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.