論文の概要: Revisiting Image Fusion for Multi-Illuminant White-Balance Correction
- arxiv url: http://arxiv.org/abs/2503.14774v1
- Date: Tue, 18 Mar 2025 23:01:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:23:54.788606
- Title: Revisiting Image Fusion for Multi-Illuminant White-Balance Correction
- Title(参考訳): マルチイルミナント白色補正のための画像融合の再検討
- Authors: David Serrano-Lozano, Aditya Arora, Luis Herranz, Konstantinos G. Derpanis, Michael S. Brown, Javier Vazquez-Corral,
- Abstract要約: 複数の照度を持つシーンにおけるホワイトバランスの補正は、コンピュータビジョンにおける永続的な課題である。
最近の方法では、ニューラルネットワークが入力画像の複数のsRGBバージョンを線形にブレンドする、融合ベースのアプローチが検討されている。
本稿では,SRGBのWBプリセット間で空間依存性をキャプチャするトランスフォーマーモデルを提案する。
提案手法は,新たなマルチイルミナント画像融合データセットにおいて,既存の技術よりも最大100%向上する。
- 参考スコア(独自算出の注目度): 41.71551797731725
- License:
- Abstract: White balance (WB) correction in scenes with multiple illuminants remains a persistent challenge in computer vision. Recent methods explored fusion-based approaches, where a neural network linearly blends multiple sRGB versions of an input image, each processed with predefined WB presets. However, we demonstrate that these methods are suboptimal for common multi-illuminant scenarios. Additionally, existing fusion-based methods rely on sRGB WB datasets lacking dedicated multi-illuminant images, limiting both training and evaluation. To address these challenges, we introduce two key contributions. First, we propose an efficient transformer-based model that effectively captures spatial dependencies across sRGB WB presets, substantially improving upon linear fusion techniques. Second, we introduce a large-scale multi-illuminant dataset comprising over 16,000 sRGB images rendered with five different WB settings, along with WB-corrected images. Our method achieves up to 100\% improvement over existing techniques on our new multi-illuminant image fusion dataset.
- Abstract(参考訳): 複数の照度を持つシーンにおけるホワイトバランス(WB)補正は、コンピュータビジョンにおいて永続的な課題である。
ニューラルネットワークは入力画像の複数のsRGBバージョンを線形にブレンドし、それぞれが予め定義されたWBプリセットで処理する。
しかし、これらの手法は一般的な多照度シナリオに最適であることを示す。
さらに、既存のフュージョンベースの手法は、専用のマルチ照度画像を持たないsRGB WBデータセットに依存しており、トレーニングと評価の両方を制限している。
これらの課題に対処するために,2つの重要なコントリビューションを紹介します。
まず,SRGBのWBプリセット間の空間依存性を効果的に捕捉し,線形融合法を大幅に改善するトランスフォーマーモデルを提案する。
第2に、WB補正画像とともに、5つの異なるWB設定でレンダリングされた16,000 sRGB以上の画像からなる大規模マルチ照度データセットを提案する。
提案手法は,新たなマルチイルミナント画像融合データセットにおいて,既存の技術に比べて最大100倍の精度向上を実現している。
関連論文リスト
- Exposure Bracketing Is All You Need For A High-Quality Image [50.822601495422916]
マルチ露光画像は、デノイング、デブロアリング、高ダイナミックレンジイメージング、超解像において相補的である。
本研究では,これらの課題を組み合わせ,高品質な画像を得るために露光ブラケット写真を活用することを提案する。
特に時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
低照度画像強調は、薄暗い環境で収集された画像の知覚を改善することを目的としている。
既存の方法では、識別された輝度情報を適応的に抽出することができず、露光過多や露光過多を容易に引き起こすことができる。
MSATrというマルチスケールアテンション変換器を提案し,光バランスの局所的・グローバル的特徴を十分に抽出し,視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-12-27T10:07:11Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
本稿では,低照度超解像課題の性質を深く理解しようとする,特殊二変調学習フレームワークを提案する。
Illuminance-Semantic Dual Modulation (ISDM) コンポーネントを開発した。
包括的実験は、我々のアプローチが多様で挑戦的な超低照度条件に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-09-11T06:55:32Z) - Spectral Graphormer: Spectral Graph-based Transformer for Egocentric
Two-Hand Reconstruction using Multi-View Color Images [33.70056950818641]
マルチビューRGB画像から2つの高忠実度ハンドを再構成するトランスフォーマーベースの新しいフレームワークを提案する。
本研究では, 実データへの合成学習モデルの一般化を実証し, 現実的な両手再構成を実現できることを示す。
論文 参考訳(メタデータ) (2023-08-21T20:07:02Z) - Cross-Camera Deep Colorization [10.254243409261898]
本稿では,カラープラスモノデュアルカメラシステムからの画像の整列と融合を行う,エンドツーエンドの畳み込みニューラルネットワークを提案する。
提案手法は,約10dBPSNRゲインの大幅な改善を継続的に達成する。
論文 参考訳(メタデータ) (2022-08-26T11:02:14Z) - MAFNet: A Multi-Attention Fusion Network for RGB-T Crowd Counting [40.4816930622052]
マルチアテンション・フュージョン・ネットワーク(MAFNet)と呼ばれる2ストリームのRGB-T群カウントネットワークを提案する。
エンコーダ部では、マルチアテンション・フュージョン(MAF)モジュールを2つのモード固有分岐の異なるステージに埋め込み、クロスモーダル・フュージョンを行う。
2つの人気のあるデータセットに対する大規模な実験は、提案したMAFNetがRGB-Tの群衆カウントに有効であることを示している。
論文 参考訳(メタデータ) (2022-08-14T02:42:09Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid
Learning [48.890709236564945]
小さいISOと小さな露光時間は、通常、背面または低い光条件下で画像をキャプチャするために使用される。
本稿では、そのような画像を明るくするために、単一の画像輝度化アルゴリズムを提案する。
提案アルゴリズムは,露出時間が大きい2つの仮想画像を生成するための,ユニークなハイブリッド学習フレームワークを含む。
論文 参考訳(メタデータ) (2020-07-04T08:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。